

EXPOSING WEAKNESSES OF LARGE REASONING MODELS THROUGH GRAPH ALGORITHM PROBLEMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Large Reasoning Models (LRMs) have advanced rapidly, yet existing benchmarks
on mathematics, code, and common-sense reasoning remain limited: they lack
long-context evaluation, offer insufficient challenge, and provide answers that are
difficult to verify programmatically. We introduce GRALGOBENCH, a benchmark
designed to evaluate LRMs through graph algorithm problems. Such problems are
particularly well-suited for probing reasoning abilities: they demand long-context
reasoning, allow fine-grained control of difficulty levels, and enable standardized
programmatic evaluation. Across nine tasks, our systematic experiments reveal
two major weaknesses of current LRMs. **First**, accuracy deteriorates sharply
with longer contexts—falling below 50% once graphs exceed 120 nodes—driven
by frequent execution errors, weak memory, and redundant reasoning. **Second**,
LRMs suffer from an *over-thinking* phenomenon, primarily driven by extensive
yet largely ineffective self-verification, which inflates reasoning traces without
improving correctness. By exposing these limitations, GRALGOBENCH establishes
graph algorithm problems as a rigorous, multidimensional, and practically relevant
testbed for advancing the study of reasoning in LRMs. Code is available at <https://anonymous.4open.science/r/GrAlgoBench-7D17>.
1 INTRODUCTION
Large language models (LLMs) have evolved rapidly over the past few years, becoming powerful
general-purpose AI tools with remarkable achievements in natural language processing and complex
reasoning. Recently, the emergence of Large Reasoning Models (LRMs), such as OpenAI-O1 (OpenAI, 2025) and DeepSeek-R1 (Guo et al., 2025), has further pushed the frontier of LLM development.
By leveraging long chains of thought enriched with human-like cognitive strategies—including
self-verification, strategy-shift, and backtracking—these models show significant improvements on
challenging reasoning tasks (Qin et al., 2024; Min et al., 2024; Feng et al., 2025; Dong et al., 2025).
Accordingly, evaluating the reasoning capabilities of LRMs and probing their limitations, such as
over-thinking and *under-thinking*, has become a timely research focus (Zheng et al., 2025; Chen et al.,
2024c; Sun et al., 2025; Yang et al., 2025b;c).
Current benchmarks for LRMs, while valuable, exhibit several critical deficiencies when centered
on domains like *mathematical reasoning* (Petrov et al., 2025; He et al., 2024; Huang et al., 2024;
Gulati et al., 2024; Glazer et al., 2024; Li et al., 2025b; Huang et al., 2025), *code generation* (Li
et al., 2022; Dai et al., 2024; Yang et al., 2025b; Yu et al., 2024; Wei et al., 2025; He et al., 2025b;
Zheng et al., 2025), and *common-sense reasoning* (White et al., 2024; Suzgun et al., 2022; Lin
et al., 2025). First, they **lack long-context evaluation**: existing benchmarks predominantly use
short problem texts, which cannot be easily scaled to assess LRMs’ reasoning capabilities over
extended contexts. As modern LRMs increasingly support longer inputs, rigorous evaluation of
their performance on lengthy, complex reasoning tasks becomes essential. Second, they exhibit
inadequate challenge levels: Current benchmarks are no longer sufficiently difficult for LRMs (e.g.,
GPT-5 achieving 94.3% on AIME-2025), yet creating more challenging variants requires non-trivial
human effort in problem redesign. Third, their answers are **not standardized and therefore hard
to verify programmatically**: for example, in mathematical problems, solutions often incur diverse
latex expressions (e.g., $\$$ vs. $\backslash[$ vs. $\backslashbegin\{align\}$) and admit multiple equivalent math formulations
(e.g., $\frac{1}{3}$ vs. $1/3$, 10% vs. 0.1), which greatly increases verification effort.

ABSTRACT

Large Reasoning Models (LRMs) have advanced rapidly, yet existing benchmarks on mathematics, code, and common-sense reasoning remain limited: they lack long-context evaluation, offer insufficient challenge, and provide answers that are difficult to verify programmatically. We introduce GRALGOBENCH, a benchmark designed to evaluate LRMs through graph algorithm problems. Such problems are particularly well-suited for probing reasoning abilities: they demand long-context reasoning, allow fine-grained control of difficulty levels, and enable standardized programmatic evaluation. Across nine tasks, our systematic experiments reveal two major weaknesses of current LRMs. **First**, accuracy deteriorates sharply with longer contexts—falling below 50% once graphs exceed 120 nodes—driven by frequent execution errors, weak memory, and redundant reasoning. **Second**, LRMs suffer from an *over-thinking* phenomenon, primarily driven by extensive yet largely ineffective self-verification, which inflates reasoning traces without improving correctness. By exposing these limitations, GRALGOBENCH establishes graph algorithm problems as a rigorous, multidimensional, and practically relevant testbed for advancing the study of reasoning in LRMs. Code is available at <https://anonymous.4open.science/r/GrAlgoBench-7D17>.

1 INTRODUCTION

Large language models (LLMs) have evolved rapidly over the past few years, becoming powerful general-purpose AI tools with remarkable achievements in natural language processing and complex reasoning. Recently, the emergence of Large Reasoning Models (LRMs), such as OpenAI-O1 (OpenAI, 2025) and DeepSeek-R1 (Guo et al., 2025), has further pushed the frontier of LLM development. By leveraging long chains of thought enriched with human-like cognitive strategies—including self-verification, strategy-shift, and backtracking—these models show significant improvements on challenging reasoning tasks (Qin et al., 2024; Min et al., 2024; Feng et al., 2025; Dong et al., 2025). Accordingly, evaluating the reasoning capabilities of LRMs and probing their limitations, such as *over-thinking* and *under-thinking*, has become a timely research focus (Zheng et al., 2025; Chen et al., 2024c; Sun et al., 2025; Yang et al., 2025b;c).

Current benchmarks for LRMs, while valuable, exhibit several critical deficiencies when centered on domains like *mathematical reasoning* (Petrov et al., 2025; He et al., 2024; Huang et al., 2024; Gulati et al., 2024; Glazer et al., 2024; Li et al., 2025b; Huang et al., 2025), *code generation* (Li et al., 2022; Dai et al., 2024; Yang et al., 2025b; Yu et al., 2024; Wei et al., 2025; He et al., 2025b; Zheng et al., 2025), and *common-sense reasoning* (White et al., 2024; Suzgun et al., 2022; Lin et al., 2025). First, they **lack long-context evaluation**: existing benchmarks predominantly use short problem texts, which cannot be easily scaled to assess LRMs’ reasoning capabilities over extended contexts. As modern LRMs increasingly support longer inputs, rigorous evaluation of their performance on lengthy, complex reasoning tasks becomes essential. Second, they exhibit **inadequate challenge levels**: Current benchmarks are no longer sufficiently difficult for LRMs (e.g., GPT-5 achieving 94.3% on AIME-2025), yet creating more challenging variants requires non-trivial human effort in problem redesign. Third, their answers are **not standardized and therefore hard to verify programmatically**: for example, in mathematical problems, solutions often incur diverse latex expressions (e.g., $\$$ vs. $\backslash[$ vs. $\backslashbegin\{align\}$) and admit multiple equivalent math formulations (e.g., $\frac{1}{3}$ vs. $1/3$, 10% vs. 0.1), which greatly increases verification effort.

054 Table 1: Comparison of our work with prior benchmarks on graph algorithm problems.
055

056 Work	057 Graph Size (by nodes)	058 Reasoning Taxonomy	059 LRMs' Evaluation	060 Real-world Data
NLGraph (Wang et al., 2023)	5-35	\times	\times	\times
GPT4Graph (Guo et al., 2023)	10-20	\times	\times	\times
GraphQA (Fatem et al., 2023)	5-20	\times	\times	\times
LLM4DyG (Zhang et al., 2024)	5-20	\times	\times	\times
GraphInstruct (Luo et al., 2024)	5-35	Node, edge, graph level	\times	\times
GraphArena (Tang et al., 2024)	4-50	P and NP	\times	\checkmark
VisionGraph (Li et al., 2024)	5-35	\times	\times	\times
GraCore (Yuan et al., 2024)	8-30	Graph reasoning and graph understanding	\times	\checkmark
GraphOmni (Xu et al., 2025)	5-30	Node, edge, graph level	\times	\times
Ours	8-160	Enumeration, Exploration, Intuition	\checkmark	\checkmark

064 These collective limitations motivate a pivotal research question: *Can we gather a family of reasoning*
065 *tasks that address the concerns above to form a more rigorous benchmarking suite for LRM*s?

066 In this work, we posit that *graph algorithm problems* (Wang et al., 2023; Chen et al., 2024a; Luo
067 et al., 2024; Zhang et al., 2025) represent a superior and highly promising choice. They furnish
068 several distinctive advantages: (1) **Effective Long-Context Reasoning**: Describing a graph typically
069 requires listing nodes and edges, producing lengthy inputs whose solutions cannot be directly
070 extracted but must be derived through multi-step reasoning. These properties make graph algorithm
071 problems naturally suited for evaluating long-context reasoning. For example, OpenAI employed
072 the *GraphWalks* (OpenAI, 2025) dataset to benchmark the long-context capabilities of GPT-5. (2)
073 **Scalable Difficulty Level Control**: Task complexity can be precisely modulated by scaling graph
074 parameters like node size, often leading to quadratic or even exponential growth in difficulty. As
075 evidenced in Table 3, model accuracy deteriorates sharply as graph size surpasses 120 nodes. (3)
076 **Standardized and Programmatic Evaluation**: Outputs typically consist of integers or explicit
077 graph elements (e.g., nodes, edges, or paths) that has no alternative representations, which permits
078 standardized and programmatic verification.

079 Furthermore, graph algorithm problems are both highly extensible and resistant to data contamination,
080 as minor structural perturbations can generate a vast number of new, valid instances at scale.
081 Crucially, graph algorithms are foundational to numerous real-world applications, including social
082 networks (Ceccarello et al., 2024; Oettershagen et al., 2024), transportation systems (Ahmadian et al.,
083 2024), and web mining (Chen et al., 2024b; Miyauchi et al., 2024; Pang et al., 2024). This practical
084 relevance ensures that such benchmarks are not only rigorous but also grounded by real-world utility.

085 While several benchmarks have been proposed for evaluating LLMs on graph algorithm problems
086 (Wang et al., 2023; Zhang et al., 2024; Tang et al., 2024; Yuan et al., 2024), they suffer from
087 three critical limitations (see Table 1). First, prior works focus mainly on non-reasoning LLMs,
088 leaving the behaviors of O1-like LRM s largely unexplored. Second, their graph sizes are capped
089 at 50 nodes, leaving the advantage of scalable difficulty level control unexploited. Third, their task
090 categorizations are often based on ad-hoc criteria such as local vs. global, graph understanding vs.
091 graph reasoning, or P vs. NP, rather than grounded in algorithmic design principles that better capture
092 distinct and practically relevant reasoning paradigms.

093 To address these gaps, we propose **GRALGOBENCH**, a new benchmark for evaluating LRM s on
094 graph algorithm problems. Figure 1 presents an overview of our benchmark, which consists of:

095 **① Systematic Dataset Construction**: We categorize problems into three categories—*Enumeration*,
096 *Exploration*, and *Intuition*—each containing subproblems with different difficulty levels to probe
097 distinct reasoning capacities. Our dataset comprises 2,700 graphs sampled directly from diverse
098 real-world networks, ranging from 8 to 160 nodes across six scales, which increases diversity and
099 mitigates data contamination risks.

100 **② Comprehensive Evaluation**: We evaluate not only non-reasoning models but also reasoning
101 models (e.g., O1-like LRM s). Multiple metrics are adopted, including Pass@k, Cons@k, Z-score,
102 and outcome efficiency, enabling multi-faceted analysis.

103 **③ Novel Research Questions**: We systematically investigate: (1) Do LRM s excel at long-context
104 reasoning (Section 3.1)? (2) What leads to over-thinking of LRM s when solving graph algorithm
105 problems (Section 3.2)?

106 Our experiments reveal two key findings. **First**, by evaluating LRM s on graphs with varying node
107 sizes as well as on fixed graphs with increasingly verbose textual descriptions, we observe a consistent

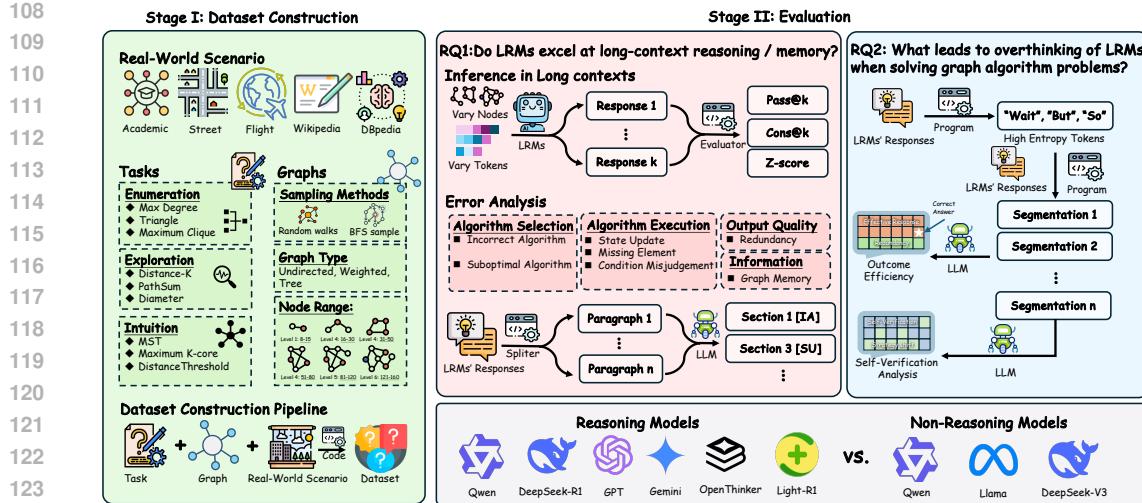


Figure 1: Benchmark overview.

performance decline as context length grows—for instance, most models achieve less than 50% accuracy once the graph size surpasses 120 nodes. This demonstrates that LRMAs are particularly weak at long-context reasoning. Through detailed error analysis, we identify three primary causes: frequent step-by-step execution errors, poor memory capability, and redundant reasoning patterns. **Second**, by analyzing how efficiently models reach the correct answer together with the frequency and effectiveness of self-verification, we find that LRMAs engage in extensive yet largely ineffective self-verification, which emerges as the main driver of *over-thinking*.

2 BENCHMARK CONSTRUCTION

Figure 1 illustrates the composition and structure of our dataset. Section 2.1 introduces the reasoning taxonomy, followed by task design in Section 2.2 and graph collection in Section 2.3.

2.1 GRAPH REASONING TAXONOMY

Graph algorithm problems encompass diverse reasoning paradigms, providing a comprehensive framework to evaluate LRMAs' reasoning capabilities across multiple dimensions. Unlike prior approaches that categorize problems based on difficulty levels or by local versus global scopes (Luo et al., 2024; Tang et al., 2024; Yuan et al., 2024; Xu et al., 2025), we propose a taxonomy grounded in the algorithmic nature of reasoning, closely aligned with the major algorithmic design families in *Introduction to Algorithms (CLRS)* (Cormen et al., 2022). Specifically, graph algorithm problems can be systematically divided into three fundamental classes: Enumeration, Exploration, and Intuition. Each class corresponds directly to a canonical algorithmic design paradigm in CLRS:

- **Enumeration (brute-force algorithms):** Problems in this category align with the brute-force paradigm in CLRS. They require LRMAs to systematically generate all possible solutions or elements within a set. The canonical example in graph algorithms is brute-force enumeration of subgraphs or paths. Beyond graph problems, enumeration manifests in domains like mathematics, where LRMAs need to enumerate all permutations in a combinatorial problem or all cases in a probability calculation.
- **Exploration (search algorithms):** This category corresponds to the search paradigm in CLRS, requiring traversal of a state space with potential backtracking. LRMAs must explore multiple paths and recover from dead-ends. Typical graph examples include depth-first search and breadth-first search. Beyond graphs, it appears in tasks such as Sudoku or N-Queens, where candidate moves are tried, conflicts detected, and backtracking applied.
- **Intuition (greedy algorithms):** This category corresponds to the greedy paradigm in CLRS, where locally optimal choices are made to efficiently approximate or eventually reach a

162 global optimum. It tests LRM_s’ ability to exploit subtle problem-specific signals for efficient
 163 decisions. Representative graph examples include Dijkstra’s and Kruskal’s algorithms;
 164 outside graphs, a classic case is Huffman coding.
 165

166 Importantly, all three paradigms collectively test complementary reasoning abilities of LRM_s: enumeration
 167 probes *systematic coverage of a search space*, exploration evaluates *multi-path search and*
 168 *backtracking*, and intuition assesses *intuitive and efficient decision making*. Beyond these, all graph
 169 problems inherently test **memory** (remembering the graph structure), **logical reasoning** (deriving
 170 consequences from premises, e.g., inferring the existence of cycles), and **structural reasoning** (rea-
 171 soning about relationships among nodes and edges). Owing to this diversity of reasoning paradigms
 172 and general cognitive requirements, graph algorithm problems constitute a uniquely challenging and
 173 informative benchmark for evaluating the reasoning capabilities of LRM_s.
 174

175 2.2 TASK DESIGN

176 With the problem taxonomy established, the next challenge lies in **classifying graph algorithm**
 177 **problems into these categories**. It is important to emphasize that classification cannot be based
 178 solely on a single optimal algorithm for solving the problem, as a given problem can be approached
 179 using multiple algorithmic strategies. Moreover, we do not know which algorithmic approach an
 180 LRM is more likely to employ when tackling a specific problem. For example, shortest path problems
 181 can be solved using brute-force methods (an Enumeration approach), DFS (an Exploration
 182 approach), or Dijkstra’s algorithm (an Intuition approach).
 183

184 To address this, we collect a variety of graph algorithm problems and propose an **LLM-as-judge** ap-
 185 proach for determining the classification of each problem. Specifically, for each problem—comprising
 186 a graph description and a task description expressed in natural language—we first generate 100 Erdős-
 187 Rényi (ER) graphs (Erdős et al., 1960) to replace the original graph description, creating a diverse
 188 set of problem instances. We then prompt LRM_s with these instances, obtain their responses, and
 189 use Qwen-2.5-72B (Team, 2024; Yang et al., 2024) as a judge to classify the reasoning category to
 190 which these responses belong (detailed prompts are provided in Appendix I.1). Finally, we select
 191 **9** graph tasks in which the algorithms used by LRM_s for reasoning are relatively unambiguous,
 192 thereby facilitating more straightforward classification. We present in Appendix H.1 the distribution
 193 of algorithms used by representative LRM_s across different tasks, illustrating how each task aligns
 194 with our proposed reasoning taxonomy.
 195

196 We now introduce the tasks within each reasoning taxonomy, along with the definition of each task.
 197 Based on the optimal time complexity of each task under the corresponding algorithm of the category,
 198 we classify the tasks into three levels: easy, medium, and hard. More specified task definitions and
 199 the time complexity of the optimal algorithm for each task are given in Appendix F.1.

200 **Enumeration:** (1) Maximum Degree node (easy): Identify the node with the maximum
 201 degree in a given undirected graph and output its degree. (2) Maximum Weight Triangle
 202 (medium): Given an undirected graph where each node is assigned a weight, find a triangle (a set
 203 of three nodes connected to each other) that has the maximum sum of node weights and output its
 204 weight sum. (3) Maximum Clique Problem (hard): Given an undirected graph, identify a
 205 subgraph in which all nodes are pairwise connected, and the subgraph contains the maximum number
 206 of nodes. Then, output the size of the subgraph.
 207

208 **Exploration:** (1) PathSum (easy): Given an undirected tree where each edge is assigned a
 209 weight, output the number of paths from the root to the leaves for which the sum of the edge weights
 210 exceeds a given threshold τ . (2) Distance- k (medium): Given an undirected graph and a
 211 specific node v , find all other nodes that are within k -hops from v and output the number of qualified
 212 nodes. (3) Diameter (hard): Identify the longest shortest path between any two nodes in a
 213 given undirected graph and output the length of this path.
 214

215 **Intuition:** (1) Maximum k -core (easy): Given an undirected graph, find a subgraph in which
 216 each node has a degree of at least k and the subgraph contains the maximum number of nodes.
 217 Then, output the size of the subgraph. (2) Minimum Spanning Tree (medium): Given a
 218 connected, undirected graph with edge weights, find a spanning tree that connects all nodes with the
 219 minimum possible total edge weight and output the total edge weight. (3) Distance Threshold

216	Enumeration	Exploration	Intuition
217	<p>Maximum Degree</p> <p>You are given an undirected graph representing the Dublin street network. You are required to find the street in the network that has maximum connections to other streets.</p> <ul style="list-style-type: none"> - Streets in the network: Lissadel Avenue, Gallymore Road, Dolphin Road... - Intersections in the network: Lissadel Avenue and Benbulbin Road, Lissadel Avenue and Knocknarea Avenue... <p>Please determine which street intersects with the greatest number of other streets, and provide the total count of its intersections.</p>	<p>Distance-k</p> <p>You are given an undirected graph representing the London street network. Given a street "Southerton Road", find all streets that are exactly distance 3 away from the street.</p> <ul style="list-style-type: none"> - Streets in the network: Southerton Road, Beadon Road, Hammersmith Broadway, Kilmarsh Road... - Intersections in the network: Beadon Road and Cameron Road, Beadon Road and Glenthorne Road, Beadon Road and Hammersmith Broadway... <p>Please find the streets in distance 3 from the street Southerton Road and output the number of these streets.</p>	<p>Maximum k-core</p> <p>You are given an undirected graph representing the Rome street network. You are required to find a maximum k-core ($k = 2$) in this network.</p> <ul style="list-style-type: none"> - Streets in the network: Via Udine, Viale Ippocrate, Via Catania... - Intersections in the network: Via Udine and Via Catania, Via Udine and Via Lucca... <p>Please find the maximum 2-core in the network and output the number of streets in this 2-core.</p>

Figure 2: Illustrative problem description.

(hard): Given an undirected graph with positive edge weights, find the node that can reach the smallest number of other nodes via shortest paths of length at most a threshold, and output that node.

2.3 GRAPH COLLECTION

To measure the semantic understanding capabilities of LRM_s and further avoid data contamination, we construct graphs and graph problems using nodes and edges with real-world semantics. We collect graph problems from the following five scenarios: (1) **DBLP (Ley, 2002)**: An academic collaboration network consisting of over 1.3 million nodes (authors) and 5 million edges (collaborations). This graph is used for the PathSum task. (2) **Street Network (Boeing, 2025)**: A collection of city transportation networks worldwide, where nodes represent streets and edges represent intersections between two streets. We use the transportation networks of London (containing 36,281 nodes and 83,662 edges, for Distance- k), Sydney (containing 30,291 nodes and 69,126 edges, for Minimum Spanning Tree), Dublin (containing 3,962 nodes and 7,000 edges, for Maximum Degree node), and Rome (containing 14,719 nodes and 28,087 edges, for Maximum k -core). (3) **OpenFlight (Open-Flights)**: An airport network consisting of 3,390 nodes (airports) and 19,166 edges (flight routes) weighted by geographical distance. This graph is assigned to the Distance Threshold task. (4)

Wikipedia (Yin et al., 2017): A web graph of Wikipedia hyperlinks collected in September 2011, containing 1,791,489 nodes (representing articles) and 28,511,807 edges (representing hyperlinks between articles). This graph is used for the Maximum Weight Triangle and Maximum Clique Problem tasks. (5) **DBpedia (Bizer et al., 2009)**: A knowledge graph subset with over 1 million nodes (entities) and 7 million edges (relationships). This graph is assigned to Diameter task.

For each task, we employ random walk or BFS sampling methods to extract subgraphs of varying sizes from the corresponding real-world graphs. These subgraph sizes are divided into six categories: level-1 (8–15 nodes), level-2 (16–30 nodes), level-3 (31–50 nodes), level-4 (51–80 nodes), level-5 (81–120 nodes), and level-6 (121–160 nodes). In total, the dataset comprises 2,700 problem instances, with each size category containing 50 samples. Examples of problem descriptions for selected tasks are presented in Figure 2, while detailed statistics are provided in Table 2.

3 EVALUATION

In this section, we evaluate the capabilities of LRM_s in solving graph algorithm problems and analyze the limitations in their reasoning. Our evaluation focuses on two research questions: **RQ1**: Do LRM_s excel at long-context reasoning? **RQ2**: What leads to over-thinking of LRM_s when solving graph algorithm problems? Details of the evaluation setup are provided in Appendix E.

3.1 EXPLORING LRM_s’ LONG-CONTEXT REASONING ABILITY (RQ1)

With the rapid extension of context windows in modern LRM_s, a central question is whether these models can truly perform *understanding and reasoning* over long contexts. Graph algorithm problems

270
 271
 272
 273
 274
 275
 Table 3: We evaluate models on six graph scales (Level-1 to Level-6). For each size, performance is
 276 measured on three task taxonomies: Enumeration, Exploration, and Intuition. The evaluation metrics
 277 are $\text{cons}@k$ ($c@k$) and $\text{pass}@k$ ($p@k$). We also report per-scale averages across tasks. Results for
 278 Level-1 and Level-2 are presented in the Appendix H.2. For each model scale, the best results are
 279 highlighted in **bold**, while the second-best results are underlined.

Models	Level-3 (31-50 nodes)								Level-4 (51-80 nodes)							
	Enumeration		Exploration		Intuition		Avg.		Enumeration		Exploration		Intuition		Avg.	
	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$
Skywork-OR1-7B-Preview	0.13	<u>0.58</u>	0.10	0.35	0.00	0.03	0.08	0.32	0.06	0.44	0.06	0.30	0.01	0.06	0.04	0.27
Light-R1-7B-DS	0.11	0.53	0.07	0.35	0.01	0.08	0.06	0.32	0.08	0.34	0.07	0.30	0.00	0.03	0.05	0.22
Distill-Qwen-7B	0.13	0.59	0.05	0.39	0.01	0.13	0.06	0.37	0.12	0.41	0.07	0.39	0.00	0.07	0.06	<u>0.29</u>
Qwen2.5-7B	0.11	0.39	0.10	0.21	0.00	0.03	0.07	0.21	0.09	0.36	0.11	0.29	0.03	0.07	<u>0.08</u>	0.24
OpenThinker-7B	0.19	0.61	0.07	0.43	0.01	0.13	0.09	<u>0.39</u>	0.03	0.41	0.04	0.32	0.01	0.03	0.03	0.25
Qwen3-8B-no-thinking	0.17	0.51	0.11	0.49	0.01	0.10	<u>0.10</u>	0.37	0.12	0.48	0.09	0.34	0.00	0.03	0.07	0.28
Qwen3-8B	0.79	0.99	0.69	0.93	0.40	0.69	0.63	0.87	0.44	0.83	0.28	0.63	0.09	0.26	0.27	0.58
GPT-OSS-20B	0.59	0.78	0.50	0.67	0.39	0.59	0.49	0.68	0.43	0.54	0.40	0.50	0.31	0.43	0.38	0.49
Light-R1-32B	0.71	0.97	0.64	0.94	0.35	0.59	0.57	0.83	0.43	0.87	0.38	0.76	0.06	0.31	0.29	0.65
Skywork-OR1-32B	0.87	0.99	0.77	0.99	0.51	0.75	0.72	0.91	0.54	0.87	0.51	0.84	0.12	0.42	0.39	0.71
Distill-Qwen-32B	0.63	0.89	0.46	0.81	0.21	0.51	0.43	0.74	0.42	0.80	0.23	0.60	0.03	0.31	0.23	0.57
Qwen2.5-32B	0.25	0.61	0.10	0.43	0.04	0.19	0.13	0.41	0.16	0.49	0.06	0.31	0.04	0.13	0.09	0.31
OpenThinker-32B	0.75	0.97	0.56	0.91	0.30	0.57	0.54	0.82	0.44	0.87	0.31	0.74	0.11	0.30	0.29	0.64
QWQ-32B	0.69	0.88	0.69	0.93	0.53	0.73	<u>0.69</u>	<u>0.88</u>	0.68	0.96	0.53	0.84	0.30	0.58	0.50	0.79
Qwen3-32B	0.79	0.99	0.69	0.93	0.40	0.69	0.63	0.87	0.52	0.89	0.51	0.87	0.26	0.59	0.43	0.78
Qwen3-32B-no-thinking	0.33	0.69	0.35	0.81	0.02	0.21	0.23	0.57	0.20	0.63	0.16	0.57	0.02	0.16	0.13	0.45
Llama-3.3-70B	0.10	0.36	0.13	0.39	0.01	0.04	0.08	0.26	0.04	0.27	0.00	0.21	0.00	0.01	0.01	0.16
GPT-OSS-120B	0.76	0.82	0.78	0.88	0.68	0.92	0.74	0.87	0.56	0.74	0.56	0.76	0.52	0.75	0.55	0.75
Qwen3-235B-A22B-Thinking	0.98	1.00	0.96	1.00	0.96	0.99	0.97	1.00	0.88	0.98	0.89	0.99	0.81	0.92	0.86	0.96
Qwen3-235B-A22B-Instruct	0.91	0.98	0.87	0.97	0.80	0.97	<u>0.86</u>	<u>0.97</u>	0.77	0.97	0.79	0.98	0.66	0.89	0.74	0.95
Models	Level-5 (81-120 nodes)								Level-6 (121-160 nodes)							
	Enumeration		Exploration		Intuition		Avg.		Enumeration		Exploration		Intuition		Avg.	
	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$	$c@k$	$p@k$
GPT-OSS-20B	0.51	0.68	0.18	0.33	0.16	0.27	0.28	0.43	0.28	0.48	0.10	0.14	0.04	0.09	0.14	0.24
Light-R1-32B	0.80	0.80	0.45	0.45	0.01	0.07	0.42	0.44	0.22	0.68	0.05	0.23	0.00	0.01	0.09	0.31
Skywork-OR1-32B	0.67	0.67	0.51	0.51	0.00	0.00	<u>0.39</u>	0.39	0.10	0.47	0.03	0.23	0.00	0.00	0.04	0.24
Distill-Qwen-32B	0.45	0.83	0.09	0.37	0.00	0.03	0.18	0.41	0.26	0.77	0.07	0.31	0.00	0.03	0.11	0.37
Qwen2.5-32B	0.15	0.53	0.05	0.22	0.02	0.11	0.07	0.29	0.21	0.48	0.03	0.19	0.01	0.01	0.08	0.23
OpenThinker-32B	0.37	0.76	0.14	0.45	0.02	0.21	0.18	0.47	0.27	0.68	0.07	0.33	0.00	0.02	0.11	0.34
QWQ-32B	0.61	0.95	0.25	0.63	0.09	0.25	0.32	0.61	0.47	0.87	0.13	0.40	0.09	0.21	0.23	0.49
Qwen3-32B	0.51	0.92	0.21	0.59	0.09	0.25	0.27	<u>0.59</u>	0.42	0.80	0.09	0.43	0.09	0.19	<u>0.20</u>	0.47
Qwen3-32B-no-thinking	0.15	0.61	0.07	0.28	0.01	0.07	0.08	0.32	0.13	0.49	0.07	0.23	0.01	0.07	0.07	0.27
Llama-3.3-70B	0.07	0.21	0.01	0.11	0.00	0.02	0.03	0.11	0.02	0.22	0.00	0.07	0.00	0.00	0.01	0.10
GPT-OSS-120B	0.51	0.67	0.41	0.51	0.22	0.28	0.38	0.49	0.37	0.54	0.19	0.33	0.11	0.16	0.22	0.34
Qwen3-235B-A22B-Thinking	0.86	0.96	0.52	0.82	0.37	0.49	0.58	0.76	0.80	0.93	0.28	0.52	0.26	0.36	0.45	0.50
Qwen3-235B-A22B-Instruct	0.76	0.92	0.41	0.68	0.26	0.38	<u>0.48</u>	<u>0.66</u>	0.51	0.79	0.28	0.59	0.21	0.26	<u>0.33</u>	0.55
GPT5-mini	0.66	0.72	0.53	0.63	0.02	0.03	0.40	0.46	0.77	0.86	0.36	0.47	0.10	0.18	<u>0.41</u>	0.50
Deepseek-V3	0.56	0.71	0.34	0.54	0.00	0.00	0.30	0.42	0.40	0.54	0.22	0.32	0.00	0.00	0.21	0.29
Deepseek-R1	0.82	0.82	0.69	0.69	0.15	0.15	0.55	<u>0.55</u>	0.79	0.79	0.50	0.50	0.05	0.05	0.45	0.45
Gemini-2.5-pro	0.73	0.90	0.46	0.63	0.17	0.30	<u>0.45</u>	0.61	0.63	0.86	0.37	0.54	0.08	0.1	0.36	0.50

312 provide an ideal testbed: they allow scalable control over input length, and their solutions cannot
 313 be trivially extracted from the problem statement. To systematically **explore LRM**s’ **long-context**
 314 **reasoning ability**, we design several experiments. **First**, we vary the number of graph nodes,
 315 and alternatively fix the graph structure while extending textual descriptions of nodes, to observe
 316 performance changes as input length increases. **Second**, we collect and analyze erroneous responses
 317 to identify the underlying causes of degraded performance in long-context reasoning.

318 **Evaluation by Varying Problem Length.** We examine model performance under different input
 319 lengths through two complementary settings. **First**, we increase problem length by scaling the number
 320 of nodes and edges within the graphs, and evaluate the resulting performance across varying graph
 321 sizes; average accuracy for each reasoning taxonomy is reported in Table 3. **Second**, to decouple
 322 the effect of increased task difficulty from larger graph structures, we fix the graph topology and
 323 vary token length by modifying the textual descriptions of nodes. Specifically, we select three graph
 324 tasks—TRIANGLE SUM, DISTANCEK, and MAXIMUM K-CORE—and construct 50 graphs with 80

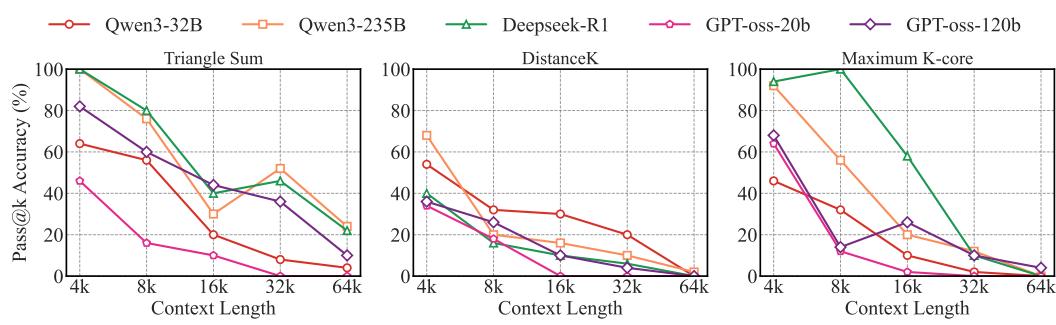


Figure 3: Models pass@k performance across different context length.

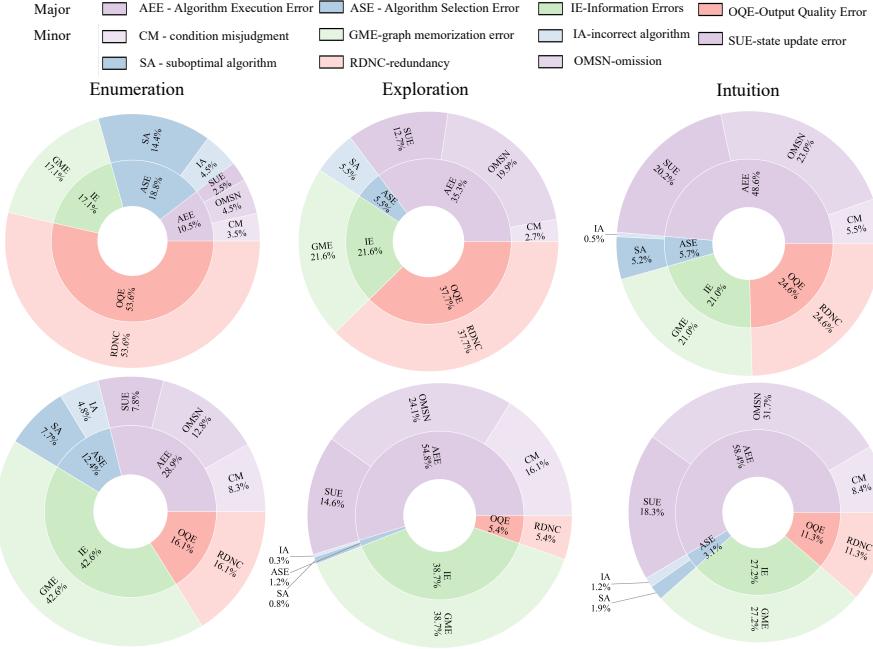


Figure 4: Error type distributions across reasoning taxonomies for Qwen3-32B (top) and its non-reasoning variant Qwen3-32B-no-thinking (bottom).

nodes and 200 edges each. By adjusting node name length, we generate five datasets with average token lengths of 4k, 8k, 16k, 32k, and 64k. We then evaluate five representative models—Qwen3-32B, Qwen3-235B-Thinking, GPT-oss-20B, GPT-oss-120B, and DeepSeek-R1—under these conditions, with results summarized in Figure 3.

Error Analysis. We examine the types of errors that LMRs commonly make when solving graph algorithm problems. Our methodology begins with establishing a taxonomy of **error categories** (see Appendix H.3), followed by the development of an automated **error detection pipeline**. Specifically, to support annotation and improve labeling accuracy, we reorganize LRM responses into coherent **paragraphs**. Specifically, we collect LRMs’ responses with incorrect final answers, segment them by “\n\n,” and index each paragraph as “*i*,” where *i* is the segment ID. We then use `qwen-2.5-72B` to merge paragraphs into **sections** by summarizing each response into tuples of (*start-index*, *end-index*, *summary*), which define the regrouped structure. Next, `O3-mini` annotates each section with one or more error categories, from which we compute the error-type distribution. Detailed prompts and the full transformation process are provided in Appendix I.1 and I.2. Figure 4 presents the error distribution for Qwen3-32B and its non-reasoning counterpart across three taxonomies, with results for other models and detailed case studies in Appendices H.3 and I.3.

① LMRs cannot effectively handle long-context reasoning. Our two complementary experiments consistently reveal the limitations of LMRs in processing extended text inputs. As shown in Table 4,

model accuracy decreases sharply as graph size grows. For example, Qwen3-32B achieves 87.0% pass@k accuracy on graphs with 31–50 nodes, but drops to 59.0% with 81–120 nodes and further to 47.0% beyond 121–160 nodes. Similar drops are observed across all evaluated models. While this decline could be attributed to increased structural complexity, additional experiments disentangle structural difficulty from textual length. By fixing the graph structure while gradually lengthening node descriptions, we observe a comparable pattern: on the TRIANGLE SUM task, DeepSeek-R1 achieves 100.0% at 4k tokens but only 22.0% at 64k tokens, while GPT-oss-120B falls from 68.0% to 10.0%. Taken together, these results point to a common bottleneck: as context length increases—whether from more graph nodes or longer textual descriptions—LRMs fail to maintain stable reasoning traces, resulting in significant performance degradation.

② LRM’s long-context reasoning is constrained by three key bottlenecks: coarse step-by-step execution, weak memory capability, and excessive redundancy. First, LRM often fail in algorithm execution even after selecting the correct strategy, as Algorithm Execution Errors (AEE) far exceed Algorithm Selection Errors (ASE)—for example, as shown in Figure 4, Qwen3-32B records AEE rates of 35.3% and 48.6% versus ASE rates of only 5.5% and 5.7% in *Exploration* and *Intuition*, respectively. The most frequent issues are State Update Errors and Omissions, indicating that models grasp high-level plans but falter on procedural details. Second, LRM struggle to maintain an accurate representation of graph structure, leading to Graph Memorization Errors (GME): while non-reasoning variants reach error rates up to 42.6%, reasoning models such as Qwen3-32B still exhibit more than 21% GME in *Exploration* and *Intuition*. Finally, reasoning models frequently introduce excessive redundancy—for instance, Qwen3-32B shows 37.7% redundancy errors in *Exploration*—where verbose and repetitive steps inflate reasoning traces without improving accuracy, and sometimes even cause additional confusion. Importantly, such redundancy reflects a form of *over-thinking*, which we will further analyze in the next section.

③ **Both reasoning and non-reasoning models achieve the best performance on *Enumeration* tasks, followed by *Exploration*, and the worst on *Intuition*.** This observation can be explained from two perspectives. First, within each node-size level, almost all models follow the pattern *Enumeration* > *Exploration* > *Intuition*. For instance, as shown at Table 3, at Level-3, GPT-OSS-20B obtains *cons@k* scores of 0.59, 0.50, and 0.39 on *Enumeration*, *Exploration*, and *Intuition*, respectively. Second, considering how large a graph each model can handle, we find that some remain more robust on *Enumeration*. For example, at Level-6, GPT-5-mini reaches 0.77 *cons@k* accuracy on *Enumeration*, but drops below 0.4 on *Exploration* and to only about 0.1 on *Intuition*. This indicates that LRM_s are relatively competent at systematic, enumeration-based reasoning but struggle substantially with intuition-driven reasoning. To further support this finding, we provide a normalized analysis using the Z-score metric in Appendix H.2.

3.2 EXPLORING UNDERLYING MECHANISMS OF LRM^S’ OVER-THINKING (RQ2)

In error analysis, we observe that reasoning models often produce substantial redundancy when solving graph problems, with responses containing unnecessary information. This phenomenon is closely related to the *over-thinking* behavior characteristic of LRM_s, where the model inefficiently expends resources by engaging in excessive verification or redundant checks even after reaching a final answer (Lu et al., 2025; Chen et al., 2024c). Such over-thinking not only generates superfluous tokens, but also leads to wasted computational resources and longer response times. In this section, we investigate LRM_s’ over-thinking phenomenon in graph algorithm problem solving from two perspectives: *post-answer generation* and *self-verification*.

427 Response Partitioning via High-Entropy Tokens. To facilitate subsequent evaluation, we parti-
 428 tion LRM-generated responses into segments. Our partitioning approach is guided by token-level
 429 generation entropy, a metric that quantifies the model’s uncertainty at each step of the generation
 430 process (See Appendix F.3 for more details). High entropy values often coincide with moments
 431 of self-verification or strategy-shifting, which may indicate over-thinking (Wang et al., 2025). By
 computing this token-level entropy across reasoning traces and visualizing it with a word cloud

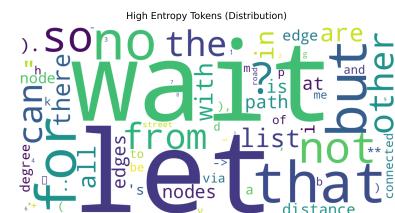
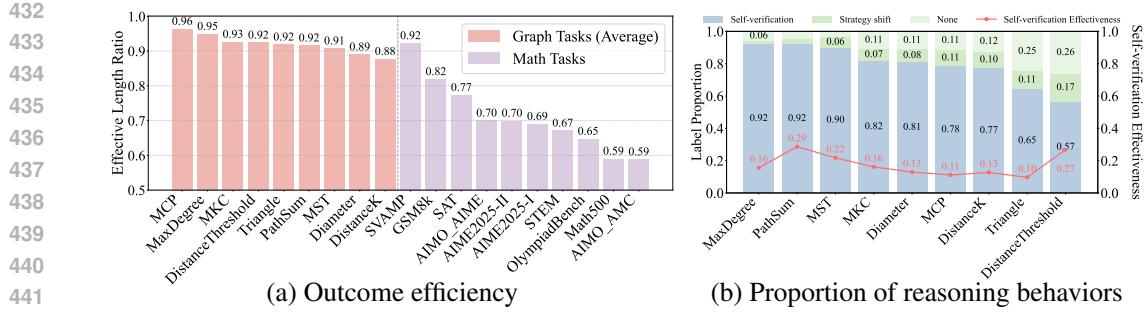


Figure 5: High-entropy tokens in LRMs inference traces



(a) Outcome efficiency (b) Proportion of reasoning behaviors

Figure 6: Overthinking analysis of QWQ-32B (See Appendix H.4 for more results). (Figure 5), we find that tokens such as “*wait*”, “*but*”, and “*so*” consistently exhibit high entropy. This observation aligns with prior studies (Li et al., 2025a; Lu et al., 2025), which have identified these tokens as typical triggers of over-thinking. Therefore, we adopt these tokens as **special partition markers**. Formally, let a response be a token sequence $T = (w_1, w_2, \dots, w_m)$. If special tokens appear at positions i_1, i_2, \dots, i_n , then T is partitioned into $n + 1$ consecutive **segments**:

$$T \Rightarrow (w_1, \dots, w_{i_1-1}), (w_{i_1+1}, \dots, w_{i_2-1}), \dots, (w_{i_n+1}, \dots, w_m). \quad (1)$$

Post-Answer Generation. One possible source of over-thinking is **post-answer generation**, i.e., the model keeps producing tokens even after outputting a correct answer (Sui et al., 2025; Chen et al., 2024c; 2025). To quantify this behavior, we adopt the **outcome efficiency** metric (Chen et al., 2024c), the fraction of tokens generated up to the first correct answer relative to the full response length:

$$\zeta_O = \frac{1}{N} \sum_{i=1}^N \frac{\hat{T}_i}{T_i}, \quad (2)$$

where N is the number of responses containing the correct answer, T_i the total response length, and \hat{T}_i the tokens up to the first correct answer. We compute \hat{T}_i by prompting Qwen2.5-72B with the original problem, the segmented LRM response, and the ground-truth answer, asking it to locate the first correct segment (Prompts can be seen in Appendix I.1). Outcome efficiency of QWQ-32B on graph and math problems is shown in Figure 6 (a).

Self-Verification. Another relevant behavior is **self-verification**, where LRMs attempt to re-check earlier reasoning or conclusions. To analyze this process, we again use Qwen2.5-72B: for each segment i , the model classifies it (given all prior segments) as *self-verification*, *strategy-shift*, or *other*. If labeled as self-verification, the segment is further judged as *effective* when it correctly identifies prior errors. Detailed prompts are listed in Appendix I.1, and Figure 6 (b) summarizes the distribution of segment types and their effectiveness.

④ **Frequent yet ineffective self-verification is a primary driver of over-thinking in LRMs when solving graph algorithm problems.** As shown in Figure 6, outcome efficiency (a) remains consistently high on graph tasks—above 0.88 in all cases—and is higher than on math tasks. This indicates that LRMs seldom continue generating tokens long after reaching the correct answer, suggesting that post-answer generation is not the main source of over-thinking in graph reasoning. In contrast, panel (b) shows that self-verification occupies a substantial fraction of reasoning traces across different tasks, yet its effectiveness is strikingly low: in most cases fewer than 30% of self-verification attempts successfully detect prior errors. Instead, the majority of these segments simply restate earlier steps or add irrelevant content, inflating response length without improving correctness. These observations together point to frequent but ineffective self-verification as the main mechanism underlying the over-thinking phenomenon in LRMs when solving graph algorithm problems.

4 CONCLUSION

We introduced **GRALGOBENCH**, a benchmark that leverages graph algorithm problems to probe reasoning in LRMs with effective long-context evaluation, fine-grained difficulty control, and programmatic assessment. Our results highlight two central limitations: accuracy drops substantially as context length grows, and over-thinking emerges from frequent yet ineffective self-verification. By uncovering these challenges, **GRALGOBENCH** establishes graph algorithms as a practical and rigorous foundation for advancing the robustness and efficiency of future reasoning models.

486 REFERENCES
487

488 Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
489 Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. *arXiv*
490 *preprint arXiv:2508.10925*, 2025.

491 Sara Ahmadian, Sreenivas Gollapudi, Gregory Hutchins, Kostas Kollias, and Xizhi Tan. Extracting
492 small subgraphs in road networks. In *Proceedings of the ACM Web Conference 2024*, pp. 493–502,
493 2024.

494 Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak,
495 and Sebastian Hellmann. Dbpedia-a crystallization point for the web of data. *Journal of web*
496 *semantics*, 7(3):154–165, 2009.

497 Geoff Boeing. Modeling and analyzing urban networks and amenities with osmnx. *Geographical*
498 *Analysis*, 2025.

499 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Fast and accurate fair k-center
500 clustering in doubling metrics. In *Proceedings of the ACM Web Conference 2024*, pp. 756–767,
501 2024.

502 Nuo Chen, Yuhang Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language model
503 for graph computational problems. In *Proceedings of the 30th ACM SIGKDD Conference on*
504 *Knowledge Discovery and Data Mining*, pp. 353–364, 2024a.

505 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
506 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
507 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025.

508 Xiaolong Chen, Yifan Song, and Jing Tang. Link recommendation to augment influence diffusion
509 with provable guarantees. In *Proceedings of the ACM Web Conference 2024*, pp. 2509–2518,
510 2024b.

511 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
512 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
513 o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024c.

514 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
515 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
516 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
517 *arXiv preprint arXiv:2507.06261*, 2025.

518 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to*
519 *algorithms*. MIT press, 2022.

520 Jianbo Dai, Jianqiao Lu, Yunlong Feng, Guangtao Zeng, Rongju Ruan, Ming Cheng, Dong Huang,
521 Haochen Tan, and Zhijiang Guo. Mhpp: Exploring the capabilities and limitations of language
522 models beyond basic code generation. *arXiv preprint arXiv:2405.11430*, 2024.

523 Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
524 Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
525 via reinforcement learning. *arXiv preprint arXiv:2505.16410*, 2025.

526 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
527 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
528 *arXiv e-prints*, pp. arXiv–2407, 2024.

529 Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. *Publ. math. inst. hung. acad. sci.*,
530 5(1):17–60, 1960.

531 Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
532 language models. *arXiv preprint arXiv:2310.04560*, 2023.

540 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
 541 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
 542 *arXiv preprint arXiv:2504.11536*, 2025.

543

544 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
 545 man Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Frontiernmath: A
 546 benchmark for evaluating advanced mathematical reasoning in ai. *arXiv preprint arXiv:2411.04872*,
 547 2024.

548 Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
 549 and Sanmi Koyejo. Putnam-axiom: A functional & static benchmark for measuring higher level
 550 mathematical reasoning in llms. In *Forty-second International Conference on Machine Learning*,
 551 2024.

552

553 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 554 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 555 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

556

557 Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
 558 language models understand graph structured data? an empirical evaluation and benchmarking.
 559 *arXiv preprint arXiv:2305.15066*, 2023.

559

560 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 561 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 562 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 563 *arXiv:2402.14008*, 2024.

564

565 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
 566 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*
 567 *arXiv:2505.22312*, 2025a.

567

568 Junda He, Jieke Shi, Terry Yue Zhuo, Christoph Treude, Jiamou Sun, Zhenchang Xing, Xiaoning
 569 Du, and David Lo. From code to courtroom: Llms as the new software judges. *arXiv preprint*
 570 *arXiv:2503.02246*, 2025b.

571

572 Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
 573 Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking llms' math reasoning abilities
 574 against hard perturbations. *arXiv preprint arXiv:2502.06453*, 2025.

575

576 Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyuman-
 577 shan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline cognitive
 578 reasoning for superintelligent ai. *Advances in Neural Information Processing Systems*, 37:19209–
 19253, 2024.

579

580 Michael Ley. The dblp computer science bibliography: Evolution, research issues, perspectives. In
 581 *International symposium on string processing and information retrieval*, pp. 1–10. Springer, 2002.

581

582 Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen
 583 Yu, Binyuan Hui, Junyang Lin, and Dayiheng Liu. Start: Self-taught reasoner with tools. *arXiv*
 584 *preprint arXiv:2503.04625*, 2025a.

585

586 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
 587 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
 588 with alphacode. *Science*, 378(6624):1092–1097, 2022.

589

590 Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang, Longyue Wang, and Min Zhang. Visiongraph:
 591 Leveraging large multimodal models for graph theory problems in visual context. *arXiv preprint*
 592 *arXiv:2405.04950*, 2024.

593

594 Zhiyuan Li, Yi Chang, and Yuan Wu. Think-bench: Evaluating thinking efficiency and chain-of-
 595 thought quality of large reasoning models. *arXiv preprint arXiv:2505.22113*, 2025b.

594 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 595 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv*
 596 *preprint arXiv:2502.01100*, 2025.

597

598 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 599 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 600 *arXiv:2412.19437*, 2024.

601

602 Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
 603 Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, et al. Retro-search:
 604 Exploring untaken paths for deeper and efficient reasoning. *arXiv preprint arXiv:2504.04383*,
 605 2025.

606

607 Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
 608 Graphinstruct: Empowering large language models with graph understanding and reasoning
 609 capability. *arXiv preprint arXiv:2403.04483*, 2024.

610

611 Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
 612 Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction report on
 613 slow-thinking reasoning systems. *arXiv preprint arXiv:2412.09413*, 2024.

614

615 Atsushi Miyauchi, Lorenzo Severini, and Francesco Bonchi. Local centrality minimization with
 616 quality guarantees. In *Proceedings of the ACM Web Conference 2024*, pp. 410–421, 2024.

617

618 Lutz Oettershagen, Honglian Wang, and Aristides Gionis. Finding densest subgraphs with edge-color
 619 constraints. In *Proceedings of the ACM Web Conference 2024*, pp. 936–947, 2024.

620

621 OpenAI. Graphwalks. <https://huggingface.co/datasets/openai/graphwalks>,
 622 2025.

623

624 OpenAI. Introducing gpt-5. *OpenAI*, August 2025. Accessed: 2025-08-07.

625

626 OpenAI. Learning to reason with llms. <https://openai.com/index/learning-to-reason-with-llms/>, 2025. Accessed: 15 March 2025. Referenced on
 627 pp. 1, 4, 6.

628

629 OpenFlights. <https://openflights.org/>. Accessed: 2024-05-25.

630

631 Jiayang Pang, Chenhao Ma, and Yixiang Fang. A similarity-based approach for efficient large
 632 quasi-clique detection. In *Proceedings of the ACM Web Conference 2024*, pp. 401–409, 2024.

633

634 Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
 635 Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
 636 math olympiad. *arXiv preprint arXiv:2503.21934*, 2025.

637

638 Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan,
 639 Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. *arXiv*
 640 *preprint arXiv:2410.18982*, 2024.

641

642 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 643 Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
 644 reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025.

645

646 Haoxiang Sun, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu, Zhongyuan
 647 Wang, and Ji-Rong Wen. Challenging the boundaries of reasoning: An olympiad-level math
 648 benchmark for large language models. *arXiv preprint arXiv:2503.21380*, 2025.

649

650 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 651 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 652 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

653

654 Jianheng Tang, Qifan Zhang, Yuhan Li, and Jia Li. Grapharena: Benchmarking large language
 655 models on graph computational problems. *arXiv e-prints*, pp. arXiv–2407, 2024.

648 OpenThoughts Team. Open Thoughts. <https://open-thoughts.ai>, January 2025a.
 649

650 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.
 651

652 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, 2025b.
 653

654 Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
 655 Can language models solve graph problems in natural language? *Advances in Neural Information
 656 Processing Systems*, 36:30840–30861, 2023.
 657

658 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 659 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 660 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025.
 661

662 Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yuan Liu, Thi-
 663 ago SFX Teixeira, Diyi Yang, Ke Wang, et al. Equibench: Benchmarking large language models'
 664 understanding of program semantics via equivalence checking. *arXiv preprint arXiv:2502.12466*,
 665 2025.
 666

666 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 667 Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
 668 *arXiv preprint arXiv:2503.10460*, 2025.
 669

670 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 671 Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging, contamination-
 672 limited llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.
 673

673 Hao Xu, Xiangru Jian, Xinjian Zhao, Wei Pang, Chao Zhang, Suyuchen Wang, Qixin Zhang,
 674 Zhengyuan Dong, Joao Monteiro, Bang Liu, et al. Graphomni: A comprehensive and extend-
 675 able benchmark framework for large language models on graph-theoretic tasks. *arXiv preprint
 676 arXiv:2504.12764*, 2025.
 677

677 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 678 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 679 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 680 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 681 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 682 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 683 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 684 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 685 technical report. *arXiv preprint arXiv:2407.10671*, 2024.
 686

686 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 687 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 688 2025a.
 689

690 Lei Yang, Renren Jin, Ling Shi, Jianxiang Peng, Yue Chen, and Deyi Xiong. Probbench: Benchmarking
 691 large language models in competitive programming. *arXiv preprint arXiv:2502.20868*, 2025b.
 692

693 Yue Yang, MingKang Chen, Qihua Liu, Mengkang Hu, Qiguang Chen, Gengrui Zhang, Shuyue
 694 Hu, Guangtao Zhai, Yu Qiao, Yu Wang, et al. Truly assessing fluid intelligence of large language
 695 models through dynamic reasoning evaluation. *arXiv preprint arXiv:2506.02648*, 2025c.
 696

696 Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order graph clustering.
 697 In *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
 698 data mining*, pp. 555–564, 2017.
 699

700 Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun
 701 Yao, Xiaohan Zhang, Hanming Li, et al. Kola: Carefully benchmarking world knowledge of large
 language models. *arXiv preprint arXiv:2306.09296*, 2023.

702 Zhaojian Yu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Humaneval pro and mbpp pro: Eval-
703 uating large language models on self-invoking code generation. *arXiv preprint arXiv:2412.21199*,
704 2024.

705 Zike Yuan, Ming Liu, Hui Wang, and Bing Qin. Gracore: Benchmarking graph comprehension and
706 complex reasoning in large language models. *arXiv preprint arXiv:2407.02936*, 2024.

707 Qifan Zhang, Nuo Chen, Zehua Li, Miao Peng, Jing Tang, and Jia Li. Improving llms' generalized
708 reasoning abilities by graph problems. *arXiv preprint arXiv:2507.17168*, 2025.

709 Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: can
710 large language models solve spatial-temporal problems on dynamic graphs? In *Proceedings of the*
711 *30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 4350–4361, 2024.

712 Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
713 Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
714 judge llms in competitive programming? *arXiv preprint arXiv:2506.11928*, 2025.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A ETHIC STATEMENT**
757758 This work focuses on benchmarking large reasoning models through graph algorithm problems. The
759 study does not involve human subjects, personally identifiable information, or sensitive data. All
760 experiments are conducted using publicly available models and synthetic datasets. We have taken
761 care to ensure that the research does not promote harmful applications and is intended solely for
762 advancing understanding of reasoning in AI systems.
763764 **B REPRODUCTIVITY STATEMENT**
765766 We provide detailed task definitions, dataset generation procedures, and evaluation protocols to ensure
767 full reproducibility. All experiments are conducted with publicly available models and standard-
768 ized settings, as described in Section E. The complete codebase, including dataset generators and
769 evaluation scripts, is released at the project repository to facilitate replication and future extensions.
770771 **C THE USE OF LARGE LANGUAGE MODELS (LLMs)**
772773 During the preparation of this work, we made use of LLMs in several stages of writing and experi-
774 mentation:
775776

- **Language Refinement:** LLMs (such as OpenAI’s ChatGPT) were employed to improve the
777 readability and academic style of the manuscript, helping to enhance clarity and consistency.
- **Evaluation Assistance:** We employed LLMs as judges to help with evaluation. These
778 models supported the assessment process and complemented our programmatic evaluation
779 pipeline.
- **Programming Support:** The Cursor environment, which incorporates AI assistance, was
780 used for generating, modifying, and refactoring segments of the codebase. This contributed
781 to faster implementation and better code quality.

782783 **D RELATED WORKS**
784785 **Benchmarking LLMs on Graph Algorithm Problems.** Graph algorithm problems demand a
786 deep understanding of structural information and long-range multi-step reasoning, making them
787 particularly challenging for LLMs. For this reason, they have been widely used in prior studies
788 to evaluate LLM capabilities. NLGraph (Wang et al., 2023), GPT4Graph (Guo et al., 2023), and
789 GraphQA (Fatemi et al., 2023) are among the earliest works, assessing LLMs on graph algorithm
790 problems by encoding tasks with LLMs alone or with a GNN–LLM combination. Building on
791 this line of research, LLM4DyG (Zhang et al., 2024) examines tasks on dynamic graphs, while
792 GraphInstruct (Luo et al., 2024) provides a broader benchmark with 21 tasks ranging from node-level
793 to graph-level. GraphArena (Tang et al., 2024) evaluates LLMs on real-world graphs with more
794 fine-grained metrics, and VisionGraph (Li et al., 2024) explores their capabilities on image graphs.
795 Most recently, GraCore (Yuan et al., 2024) evaluates LLMs from the perspectives of graph reasoning
796 and graph understanding, and GraphOmni (Xu et al., 2025) investigates their performance across
797 diverse graph types, serialization formats, and prompting schemes. However, none of these works
798 evaluate the performance of O1-like large reasoning models (LRMs) or analyze the challenges LRM
799 face when solving graph algorithm problems, which motivates our study.
800801 **Evaluating Large Reasoning Models.** The emergence of O1-like models, equipped with long
802 chains of thought and advanced reasoning strategies such as self-verification, strategy-shift, and
803 backtracking, has substantially advanced the reasoning capabilities of LLMs. This progress has
804 motivated extensive efforts to evaluate LRM across diverse domains (Petrov et al., 2025; He et al.,
805 2024; Huang et al., 2024; Gulati et al., 2024; Glazer et al., 2024; Li et al., 2025b; Huang et al., 2025;
806 Chen et al., 2024c; Wang et al., 2023; Li et al., 2022; Dai et al., 2024; Yang et al., 2025b; Yu et al.,
807 2024; Wei et al., 2025; He et al., 2025b; Zheng et al., 2025; White et al., 2024; Suzgun et al., 2022; Lin
808 et al., 2025). Among these, mathematics has become the predominant benchmarking arena, yielding
809 many new insights into the strengths and weaknesses of LRM. For instance, Putnam-AXIOM (Gulati

810 et al., 2024), FrontierMath (Glazer et al., 2024), and OlympiadBench (Sun et al., 2025) introduce
 811 increasingly challenging problems to probe the reasoning limits of models, while other works (Chen
 812 et al., 2024c; Wang et al., 2023) analyze phenomena such as *over-thinking* and *under-thinking* and
 813 explore potential mitigations. However, no prior work has systematically evaluated LRM_s on *graph*
 814 *algorithm problems*, which demand structural reasoning and memory—skills missing from existing
 815 benchmarks. To close this gap, we present **GRALGOBENCH**, the first graph-based benchmark for
 816 rigorous and application-relevant LRM_s evaluation.

818 E EXPERIMENTAL SETUP

820 **Models:** We evaluate a broad range of reasoning models as well as non-reasoning models in order to
 821 ensure comprehensive coverage. For open-source models, we include the Qwen3 series (Yang et al.,
 822 2025a), QwQ (Team, 2025b), Qwen-2.5 series (Team, 2024), OpenThinker2 series (Team, 2025a),
 823 Skywork series (He et al., 2025a), Light-R1 series (Wen et al., 2025), Llama-3.3 series (Dubey et al.,
 824 2024), GPT-OSS series (Agarwal et al., 2025), Deepseek-V3 (Liu et al., 2024), and Deepseek-R1
 825 series (Guo et al., 2025). For closed-source models, we evaluate GPT5-mini (OpenAI, 2025) and
 826 Gemini-2.5-pro (Comanici et al., 2025).

827 **Evaluation Metrics.** Our evaluation framework is designed in a systematic manner. For each
 828 problem, we collect 8 responses from every comparison model. For a few models (i.e., DeepSeek-
 829 V3/R1, GPT-5-mini, Gemini-2.5-pro), we reduce the number of responses to 4 due to computational
 830 limitations and budget constraints. We adopt two evaluation metrics: *Pass@k* and *Cons@k*. For
 831 the *Pass@k* metric, a sample is regarded as correct if at least one of the k responses generated by
 832 the LRM matches the ground-truth answer. For the *Cons@k* metric, we apply majority voting to
 833 derive a consensus answer for each problem, and then compute the average accuracy across the
 834 dataset. To ensure standardized evaluation, each problem is paired with a fixed reference answer, and
 835 correctness is assessed through exact string matching. We enforce LRM_s to output their final answers
 836 in the $\boxed{\cdot}$ format. For decoding hyperparameters, we follow prior work (Guo et al., 2025;
 837 Team, 2025b), setting `temperature`, `top_p`, `min_p`, and `max_token` to 0.6, 0.95, 0, and 32768,
 838 respectively.

839 F DEFINITION AND EXPLANATION

840 F.1 TASK DEFINITION

843 (1) **Maximum Degree node (easy):** Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, the task is to
 844 identify the node $v \in \mathcal{V}$ with the maximum degree and output its degree $\deg(v) = \max_{u \in \mathcal{V}} \deg(u)$.

846 **Optimal complexity:** $O(|V| + |E|)$ using a single scan of graph.

847 (2) **Maximum Weight Triangle (medium):** Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with a
 848 positive node weight function $w : \mathcal{V} \rightarrow \mathbb{R}^+$, the task is to find a triangle $\{v_1, v_2, v_3\}$ that maximizes
 849 the sum of their weights $\sum_{i=1}^3 w(v_i)$, and output this maximum sum.

851 **Optimal complexity:** $O(|V|^3)$ by brute-force enumeration of all triples of vertices.

852 (3) **Maximum Clique Problem (hard):** Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, the task is
 853 to find a subset of nodes $\mathcal{V}' \subseteq \mathcal{V}$ that forms a clique (i.e., every pair of nodes in \mathcal{V}' is connected by an
 854 edge) with the maximum possible size $|\mathcal{V}'|$. The output is this size.

855 **Optimal complexity:** NP-hard. The best known exact exponential-time algorithms (e.g., branch-
 856 and-bound, branch-and-reduce) run in about $O(1.1996^{|V|})$.

858 (4) **PathSum (easy):** Given an undirected tree $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ with a root r and edge weights
 859 $w : \mathcal{E} \rightarrow \mathbb{R}$, the task is to count the number of paths from the root r to a leaf node l such that the sum
 860 of edge weights $\sum_{(u,v) \in \text{path}(r,l)} w(u, v)$ exceeds a given threshold τ .

861 **Optimal complexity:** $O(|V|)$ using depth-first search (DFS).

863 (5) **Distance- k (medium):** Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and a specific node $v \in \mathcal{V}$,
 the task is to find the number of nodes $u \in \mathcal{V}$ such that their shortest path distance $d(u, v) \leq k$.

864 **Optimal complexity:** $O(|V| + |E|)$ using BFS.
 865

866 (6) **Diameter (hard):** Given an unweighted undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, the task is to find the
 867 longest shortest path between any two nodes $u, v \in \mathcal{V}$ and output its length, i.e., $\max_{u,v \in \mathcal{V}} d(u, v)$.
 868

869 **Optimal complexity:** $O(|V|(|V| + |E|))$ using BFS (or DFS) from every node.
 870

871 (7) **Maximum k -core (easy):** Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and an integer k , the task
 872 is to find a subgraph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ where for every node $v \in \mathcal{V}'$, its degree within the subgraph
 873 $\deg_{\mathcal{G}'}(v) \geq k$. The goal is to find the subgraph with the maximum number of nodes $|\mathcal{V}'|$ and output
 874 this size.
 875

876 **Optimal complexity:** $O(|V| + |E|)$ using the peeling algorithm.
 877

878 (8) **Minimum Spanning Tree (medium):** Given a connected, undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 879 with positive edge weights $w : \mathcal{E} \rightarrow \mathbb{R}^+$, the task is to find a spanning tree (a subset of edges $\mathcal{E}' \subseteq \mathcal{E}$
 880 that connects all nodes) with the minimum possible total edge weight $\sum_{(u,v) \in \mathcal{E}'} w(u, v)$. The output
 881 is this minimum total weight.
 882

883 **Optimal complexity:** Kruskal's algorithm: $O(|E| \log |V|)$.
 884

885 (9) **Distance Threshold (hard):** Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with positive edge
 886 weights, the task is to find the node $v^* = \arg \min_{v \in \mathcal{V}} |\{u \in \mathcal{V} \setminus \{v\} \mid d(u, v) \leq \tau\}|$, where τ is a
 887 given threshold, and output the node v^* .
 888

889 **Optimal complexity:** worst case $O(|V||E| \log |V|)$ using Dijkstra's algorithm from each node
 890 (truncated at distance τ).
 891

892 F.2 ERROR TYPE CLASSIFICATION

893 We categorize model errors into four major classes:
 894

895 1. *Algorithm Selection Error.* These errors capture whether LRM^s truly understand how to
 896 select an appropriate algorithm for a given problem.
 897

898 (I) **Incorrect algorithm:** The chosen algorithm cannot produce the correct solution for
 899 the problem.
 900 (II) **Suboptimal algorithm:** The algorithm is intuition (not guaranteed to produce the
 901 optimal solution) or computationally inefficient.
 902

903 2. *Algorithm Execution Error.* These errors occur when LRM^s make mistakes during the
 904 execution of an algorithm.
 905

906 (I) **State update error:** Incorrectly updating intermediate results, either by missing
 907 necessary information or storing extraneous data.
 908 (II) **Missing elements:** Failure to include essential steps, such as neglecting to traverse all
 909 nodes or edges.
 910 (III) **Condition misjudgment:** Errors in conditional checks, e.g., incorrect `if`-statements
 911 or loop conditions.
 912

913 3. *Output Quality Error.* In these cases, the model produces the correct answer but with
 914 low-quality output. We primarily focus on:
 915

916 (I) **Redundancy:** Unnecessary repetition or superfluous information in the solution.
 917

918 4. *Information Error.* These errors arise when the model fails to capture or recall critical
 919 problem-specific information. We focus on:
 920

921 (I) **Graph memorization error:** Misunderstanding or incorrectly recalling the graph
 922 structure, such as introducing extra nodes/edges or omitting existing ones.
 923

918 F.3 DEFINITION OF ENTROPY
919920 Formally, we define the entropy H_t at generation step t as the Shannon entropy of the model's
921 predicted probability distribution over its vocabulary:
922

923
$$H_t = - \sum_{j=1}^V p_{t,j} \log p_{t,j} \quad (3)$$

924

925 Here, $p_t = (p_{t,1}, \dots, p_{t,V})$ represents the probability distribution over the entire vocabulary V . This
926 distribution is produced by the language model, denoted as π_θ , conditioned on the input query q and
927 the preceding token sequence $o_{<t}$. Specifically, p_t is computed by applying a temperature-scaled
928 Softmax function to the model's raw output logits z_t :
929

930
$$p_t = \pi_\theta(\cdot \mid q, o_{<t}) = \text{Softmax}\left(\frac{z_t}{T}\right) \quad (4)$$

931

932 G ADDITIONAL TASKS DESCRIPTION
933934 **Problem Description G.1: Diameter**
935936 You are required to calculate the diameter of an undirected knowledge graph. The diameter of a
937 graph is the greatest shortest-path distance between any two nodes in the graph.
938939 **Problem to Solve**940 • Entities in this knowledge graph: Seine-et-Marne, Vendrest, Paris, Clickteam, Soignolles-
941 en-Brie, Saint-Fiacre Seine-et-Marne, France, Didier Julia
942 • The relationships between these entities are as follows:
943 – Seine-et-Marne is connected to Vendrest via the relationship department.
944 – Seine-et-Marne is connected to Saint-Fiacre Seine-et-Marne via the relationship
945 department.
946 – Seine-et-Marne is connected to Didier Julia via the relationship region.
947 – Seine-et-Marne is connected to Soignolles-en-Brie via the relationship department.
948 – Seine-et-Marne is connected to France via the relationship country.
949 – Vendrest is connected to France via the relationship country.
950 – Paris is connected to France via the relationship capital.
951 – Paris is connected to Clickteam via the relationship locationCity.
952 – Paris is connected to Didier Julia via the relationship birthPlace.
953 – Soignolles-en-Brie is connected to France via the relationship country.
954 – Saint-Fiacre Seine-et-Marne is connected to France via the relationship country.
955 – France is connected to Didier Julia via the relationship region.
956
957958 Please determine the diameter of this network and output the diameter in the following format:
959 \boxed{n} 960 **Problem Description G.2: Distance Threshold**
961962 You are given an undirected weighted graph representing the airport network, where nodes
963 represent airports (codes: DLY, TAH, HIR, IPA, VLI, BNE, NAN, AKL, LNE, FTA, AWD, EAE,
964 LNB, AUY) and edges represent direct flights between airports. The weight of each edge is the
965 distance between two airports.
966967 • The list of airports: DLY, TAH, HIR, IPA, VLI, BNE, NAN, AKL, LNE, FTA, AWD,
968 EAE, LNB, AUY
969 • The direct flights (edges) are: [DLY, IPA, 34], [DLY, VLI, 139], [TAH,
970 AUY, 105], [TAH, AWD, 46], [TAH, FTA, 105], [TAH, IPA, 64],
971 [TAH, VLI, 217], [HIR, VLI, 1282], [HIR, BNE, 2126], [HIR,
NAN, 2093], [IPA, VLI, 167], [VLI, NAN, 966], [VLI, AKL,

972 2238], [VLI, BNE, 1893], [VLI, EAE, 67], [VLI, LNB, 125],
 973 [VLI, LNE, 204], [BNE, AKL, 2295], [BNE, NAN, 2710], [NAN,
 974 AKL, 2156], [FTA, AWD, 72]

975 • The distance threshold is 284.

977 For each airport, the distance to another airport is defined as the sum of the weights (distances)
 978 along the shortest path connecting them.

979 Your task is: Return the airport code with the smallest number of other airports that can be reached
 980 with a shortest path distance no more than the threshold. If there are multiple such airports, return
 981 the one with the lexicographically largest code.

982 Present your answer in the following format: `\boxed{airport_code}`. The `airport_code` is the airport code.

984 **Problem Description G.3: Maximum Clique Problem**

986 You are required to solve the Maximum Clique Problem for an undirected wikipedia network. In
 987 this network, nodes represent wikipedia articles and edges represent hyperlinks between articles.
 988 Your objective is to find the largest subset of nodes such that every pair of vertices in this subset is
 989 connected by an edge.

990 • Articles in the network: Eugene Domingo, Philippines, Talk show, David Cook (singer),
 991 Live television, BB Gandanghari, Cool Center, Katya Santos, David Archuleta, Sadako,
 992 Gladys Guevarra, List of Philippine television shows

993 • Hyperlinks between these articles: Eugene Domingo and Cool Center, Eugene Domingo
 994 and Philippines, Philippines and Cool Center, Philippines and Gladys Guevarra, Philip-
 995 pines and BB Gandanghari, Philippines and List of Philippine television shows, Philip-
 996 pines and David Archuleta, Talk show and Cool Center, David Cook (singer) and Cool
 997 Center, David Cook (singer) and David Archuleta, Live television and Cool Center, BB
 998 Gandanghari and Cool Center, Cool Center and List of Philippine television shows, Cool
 999 Center and Sadako, Cool Center and David Archuleta, Cool Center and Gladys Guevarra,
 1000 Cool Center and Katya Santos.

1001 Identify the clique with the maximum number of articles in this network. Present your answer in
 1002 the following format: `\boxed{k}`. `k` is the number of articles of this clique.

1004 **Problem Description G.4: Minimum Spanning Tree**

1006 You are required to solve the Minimum Spanning Tree Problem for an undirected street network.
 1007 In this network, nodes represent streets (e.g., street IDs) and edges represent intersections between
 1008 streets. The weight of each edge is the distance between two streets.

1009 • Streets in the network: Mulgray Avenue, Vanessa Avenue, Eames Avenue, Gabrielle
 1010 Avenue, Justine Avenue, Coronation Road, Turon Avenue, Jasper Road, Louise Avenue,
 1011 Glanmire Road, Hilda Road, Seven Hills Road

1012 • Intersections between these streets: Mulgray Avenue and Coronation Road (weight: 6),
 1013 Mulgray Avenue and Jasper Road (weight: 3), Vanessa Avenue and Jasper Road (weight:
 1014 1), Eames Avenue and Hilda Road (weight: 7), Eames Avenue and Jasper Road (weight:
 1015 10), Gabrielle Avenue and Justine Avenue (weight: 6), Gabrielle Avenue and Turon
 1016 Avenue (weight: 7), Justine Avenue and Jasper Road (weight: 1), Justine Avenue and
 1017 Turon Avenue (weight: 6), Coronation Road and Jasper Road (weight: 9), Turon Avenue
 1018 and Jasper Road (weight: 4), Jasper Road and Glanmire Road (weight: 5), Jasper Road
 1019 and Hilda Road (weight: 1), Jasper Road and Louise Avenue (weight: 5), Jasper Road
 1020 and Seven Hills Road (weight: 2), Hilda Road and Seven Hills Road (weight: 1).

1021 Identify the minimum spanning tree of this network. The minimum spanning tree is a subset of
 1022 edges in a connected, weighted graph that connects all the vertices together with the smallest
 1023 possible total edge weight and without any cycles.

1024 Present your answer in the following format: `\boxed{n}`, where `n` is the sum of the weights of
 1025 the edges in the minimum spanning tree.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

Problem Description G.5: PathSum

You are given a binary tree representing a co-authorship network. Each node is an author, and each edge represents a co-authorship relationship, with the edge's weight indicating the number of papers co-authored by the two authors. Find all paths from the root author to any leaf author such that the sum of the edge weights (i.e., the total number of co-authored papers along the path) is greater than the given value.

- Authors in the network: Tarkan Tan, Ruud H. Teunter, Hui-Ming Wee, Samuel Yáñez Artus, Po-Chung Yang, Asoke Kumar Bhunia, Anne Barros, Yu-Chung Tsao, Samiran Chattopadhyay, A. K. Bhunia, Michel Roussignol, Mahmood Shafiee, Shib Sankar Sana, Gwo-Ji Sheen
- Co-authorship relationships (with number of co-authored papers): Tarkan Tan and Ruud H. Teunter (co-authored 2 papers), Ruud H. Teunter and Hui-Ming Wee (co-authored 4 papers), Ruud H. Teunter and Samuel Yáñez Artus (co-authored 9 papers), Hui-Ming Wee and Po-Chung Yang (co-authored 4 papers), Hui-Ming Wee and Asoke Kumar Bhunia (co-authored 5 papers), Samuel Yáñez Artus and Anne Barros (co-authored 6 papers), Po-Chung Yang and Yu-Chung Tsao (co-authored 4 papers), Asoke Kumar Bhunia and Samiran Chattopadhyay (co-authored 6 papers), Asoke Kumar Bhunia and A. K. Bhunia (co-authored 1 papers), Anne Barros and Michel Roussignol (co-authored 9 papers), Anne Barros and Mahmood Shafiee (co-authored 5 papers), Yu-Chung Tsao and Shib Sankar Sana (co-authored 10 papers), Yu-Chung Tsao and Gwo-Ji Sheen (co-authored 3 papers).
- The root of the tree is Tarkan Tan.
- The target value is 19.

Present your answer in the following format: `\boxed{n}`. n is the number of qualifying paths.

Problem Description G.6: Maximum Weight Triangle

You are required to solve the Maximum Triangle Sum Problem for an undirected wikipedia network. In this network, nodes represent wikipedia articles and edges represent hyperlinks between articles. Each node is assigned a weight. Your objective is to find the triangle with the maximum sum of weights of its three nodes.

- Articles in the network: Montebelluna (weight: 1), Massimo Mascioletti (weight: 8), Gianluca Faliva (weight: 4), Eppelheim (weight: 7), United States (weight: 6), Alberto Rebecca (weight: 10), October 15 (weight: 6), Rugby union (weight: 1), Italy (weight: 9), List of football clubs in Italy (weight: 9), Manuel Dallan (weight: 8), Brad Johnstone (weight: 1)
- Hyperlinks between these articles: Montebelluna and List of football clubs in Italy, Montebelluna and Eppelheim, Montebelluna and Alberto Rebecca, Montebelluna and Italy, Montebelluna and Manuel Dallan, Massimo Mascioletti and Brad Johnstone, Massimo Mascioletti and Gianluca Faliva, Gianluca Faliva and Italy, Gianluca Faliva and Brad Johnstone, Gianluca Faliva and Manuel Dallan, Gianluca Faliva and Rugby union, Eppelheim and Italy, United States and Italy, United States and October 15, Alberto Rebecca and Italy, October 15 and Italy, October 15 and Manuel Dallan, Rugby union and Manuel Dallan, Italy and Manuel Dallan.

Identify the triangle with the maximum sum of weights of its three nodes in this network. Present your answer in the following format: `\boxed{n}`. n is the maximum sum of weights of its three nodes.

1073

1074

1075

1076

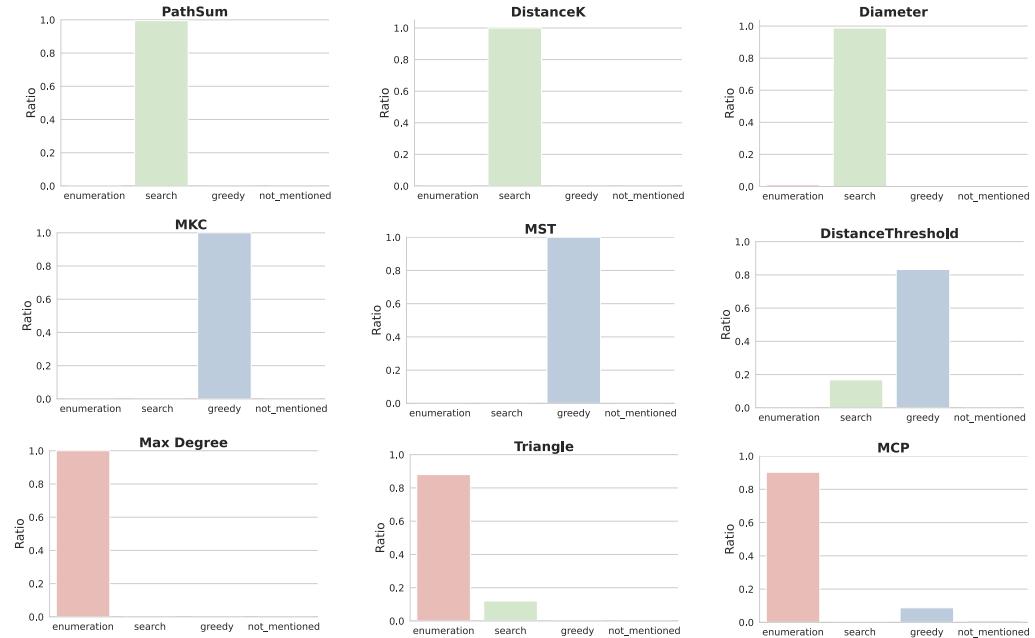
1077

1078

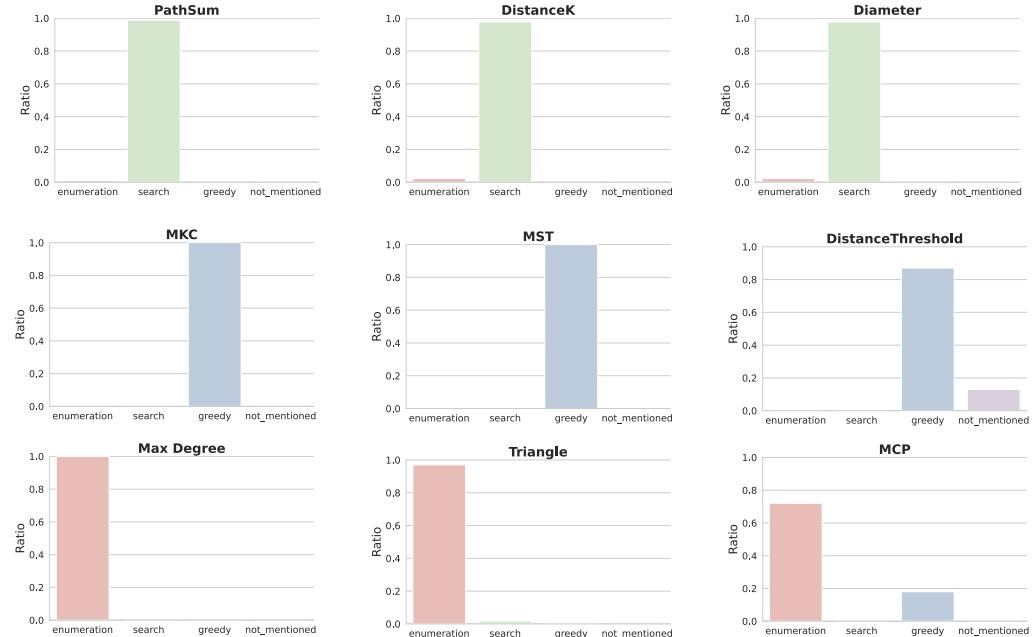
1079

1080 H ADDITIONAL EXERMENTS RESULTS

1081 H.1 ALGORITHM RATIO CALCULATION



1095 Figure 7: Algorithm ratio of Qwen3-32B.



1130 Figure 8: Algorithm ratio of Gemini-2.5-Pro.

Figure 9: Algorithm ratio of Llama-3.3-70B.

1188 H.2 PERFORMANCE ACROSS GRAPH ALGORITHM CATEGORIES (RQ1)
11891190 Table 4: Evaluation results of Level-1 and Level-2 groups.
1191

Models	Level-1 (8-15 nodes)								Level-2 (16-30 nodes)							
	Enumeration		Exploration		Intuition		Avg.		Enumeration		Exploration		Intuition		Avg.	
	c@k	p@k	c@k	p@k	c@k	p@k	c@k	p@k	c@k	p@k	c@k	p@k	c@k	p@k	c@k	p@k
Skywork-OR1-7B-Preview	0.50	0.91	0.63	0.93	0.31	0.67	0.48	0.84	0.20	0.67	0.20	0.67	0.08	0.39	0.16	0.58
Light-R1-7B-DS	0.37	0.79	0.41	0.82	0.24	0.61	0.34	0.74	0.07	0.48	0.09	0.49	0.04	0.23	0.07	0.40
Distill-Qwen-7B	0.43	0.88	0.47	0.87	0.30	0.68	0.40	0.81	0.17	0.68	0.14	0.63	0.02	0.32	0.11	0.54
Qwen2.5-7B	0.21	0.47	0.29	0.65	0.06	0.20	0.19	0.44	0.12	0.45	0.13	0.29	0.04	0.13	0.10	0.29
OpenThinker-7B	0.57	0.88	0.54	0.91	0.41	0.79	0.51	0.86	0.23	0.83	0.17	0.61	0.10	0.37	0.17	0.60
Qwen3-8B-no-thinking	0.57	0.85	0.70	0.96	0.30	0.65	0.52	0.82	0.22	0.62	0.35	0.75	0.03	0.29	0.20	0.55
Qwen3-8B	0.89	0.99	0.77	0.99	0.96	1.00	0.87	0.99	0.63	0.93	0.63	0.93	0.66	0.93	0.64	0.93
Light-R1-32B	0.97	1.00	0.97	1.00	0.95	0.99	0.96	1.00	0.85	0.99	0.89	0.97	0.71	0.93	0.82	0.96
Skywork-OR1-32B	0.91	0.99	1.00	1.00	0.89	1.00	0.94	1.00	0.93	0.99	0.97	0.99	0.87	0.98	0.92	0.99
Distill-Qwen-32B	0.93	0.99	0.96	0.99	0.96	1.00	0.95	0.99	0.75	0.98	0.73	0.95	0.62	0.89	0.70	0.94
Qwen2.5-32B	0.25	0.73	0.42	0.85	0.36	0.61	0.34	0.73	0.11	0.56	0.18	0.52	0.16	0.39	0.15	0.49
OpenThinker-32B	0.97	0.99	0.97	1.00	0.95	1.00	0.96	1.00	0.85	0.98	0.85	0.97	0.62	0.94	0.77	0.96
QWQ-32B	0.98	1.00	1.00	1.00	0.99	1.00	0.99	1.00	0.93	0.99	0.92	0.99	0.91	0.98	0.92	0.99
Qwen3-32B	0.97	0.99	0.98	1.00	0.99	1.00	0.98	1.00	0.89	0.99	0.83	0.98	0.84	0.96	0.85	0.98
Qwen3-32B-no-thinking	0.77	0.97	0.84	0.97	0.66	0.87	0.76	0.94	0.51	0.84	0.59	0.89	0.19	0.51	0.43	0.75

1208 **Normalized Analysis.** To address the imbalance in task difficulty across reasoning taxonomies, we
1209 follow prior work (Yuan et al., 2024; Yu et al., 2023) and apply a normalization procedure to reduce
1210 the influence of task complexity on model performance. Specifically, for each model and task, we
1211 compute a z -score of Pass@ k and Cons@ k accuracy and then linearly rescale the scores to the range
1212 [0, 100]. Specifically, for each model i and each task j , we compute the z -score of its Pass@ k and
1213 Cons@ k accuracy as follows:

$$1215 z_{ij} = \frac{x_{ij} - \mu(x_{i1}, \dots, x_{i|M|})}{\sigma(x_{i1}, \dots, x_{i|M|})}, \quad (5)$$

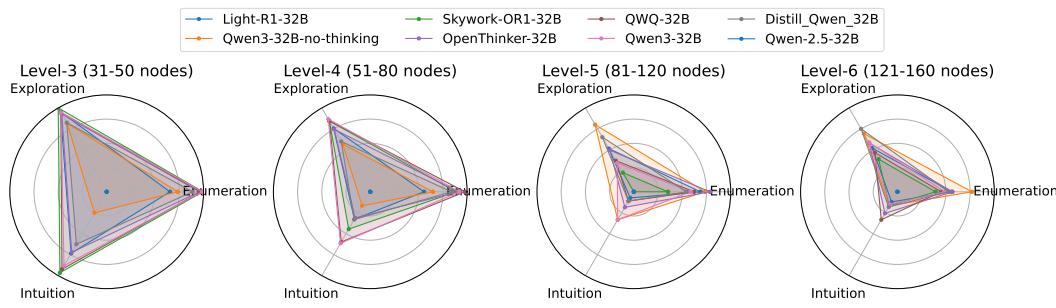
1217 where x_{ij} denotes the Pass@ k or Cons@ k accuracy of model i on task j , while $\mu(\cdot)$ and $\sigma(\cdot)$ denote
1218 the mean and standard deviation over all M models on that task.

1220 We then linearly rescale the z -scores into the range [0, 100] to obtain a normalized score:

$$1223 s_{ij} = 100 \cdot \frac{z_{ij} - \min(z)}{\max(z) - \min(z)}, \quad (6)$$

1225 where $\min(z)$ and $\max(z)$ are taken over all models on the same task.

1226 Figure 10-Figure 13 present the normalized scores of different models across reasoning taxonomies
1227 and graph sizes. The normalized outcomes preserve the same performance hierarchy observed earlier,
1228 highlighting persistent weaknesses of LRM in intuitive reasoning.



1240 Figure 10: Normalized pass@k scores of different reasoning taxonomies (32B models).
1241

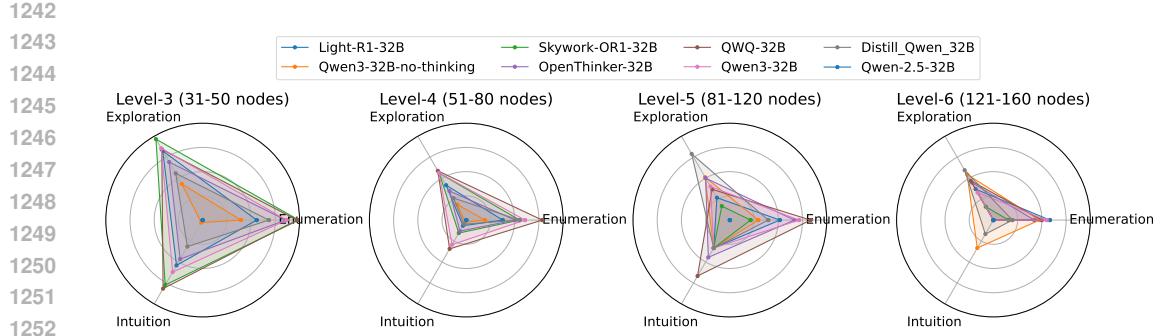


Figure 11: Normalized cons@k z-scores of different reasoning taxonomies (32B models).

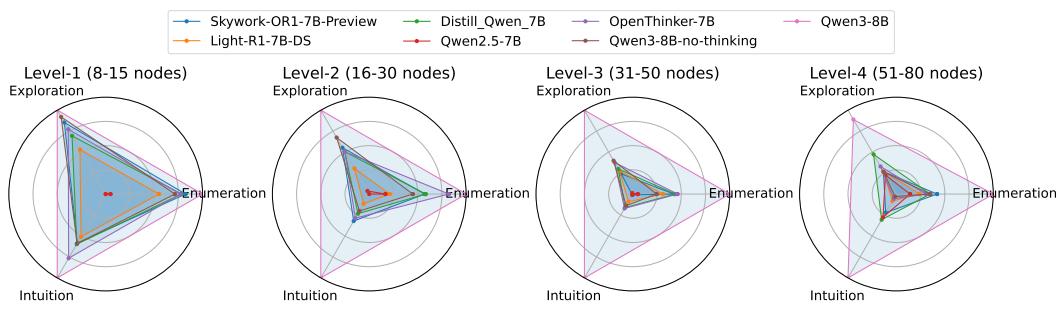


Figure 12: Normalized pass@k z-scores of different reasoning taxonomies (8B models).

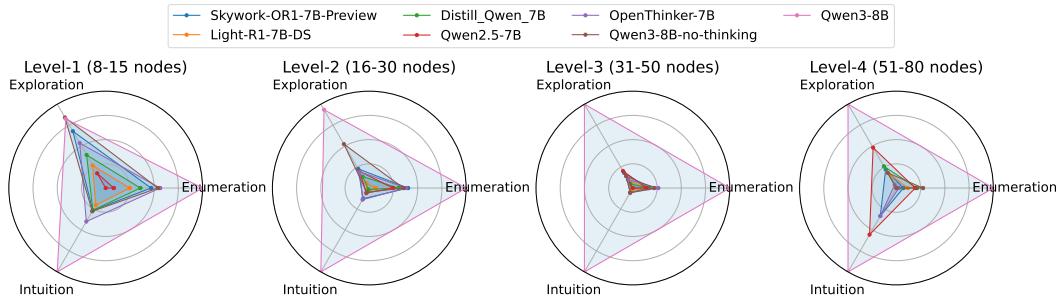


Figure 13: Normalized cons@k Z-scores of different reasoning taxonomies (8B models).

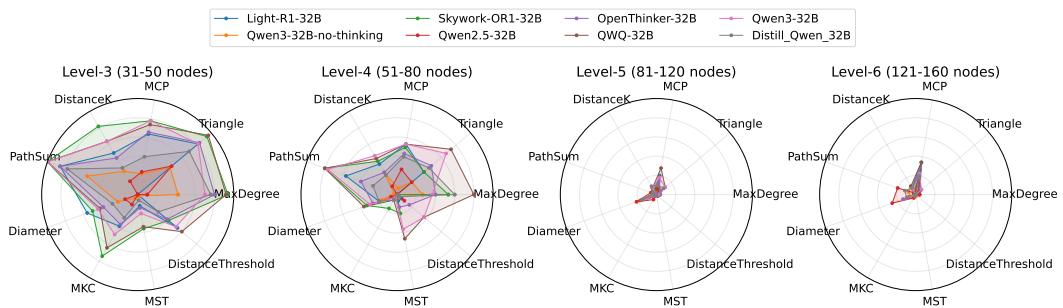


Figure 14: Cons@k accuracy of different reasoning taxonomies (32B models).

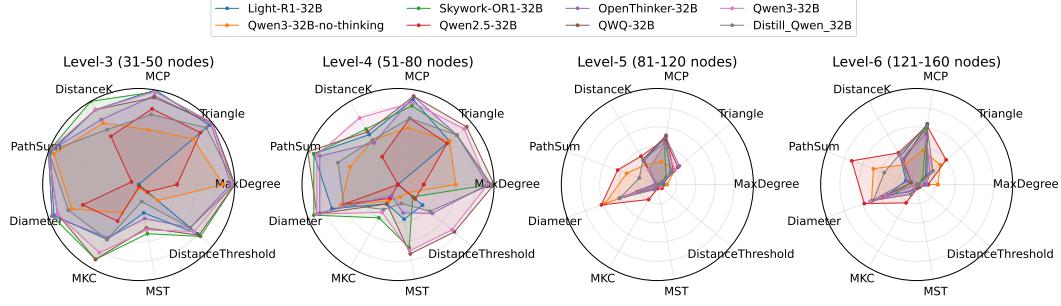
1296

1297

1298

1299

1300



1301

1302

1303

1304

1305

1306

1307

1308

1309

Figure 15: Pass@k accuracy of different reasoning taxonomies (32B models).

1310

1311

1312

1313

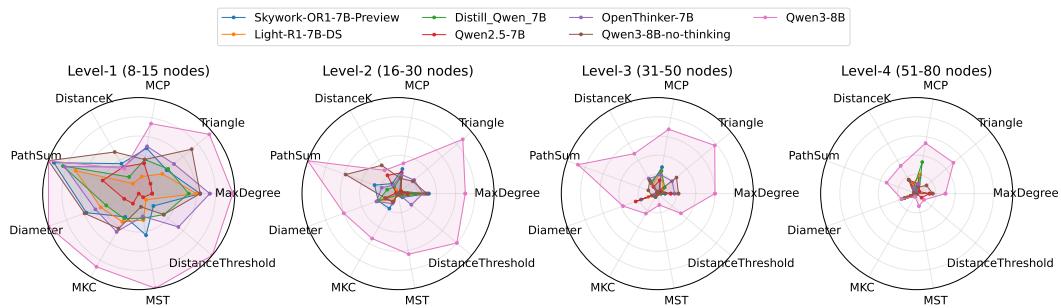
1314

1315

1316

1317

1318



1319

1320

1321

1322

1323

1324

1325

1326

1327

Figure 16: Cons@k accuracy of different reasoning taxonomies (8B models).

1328

1329

1330

1331

1332

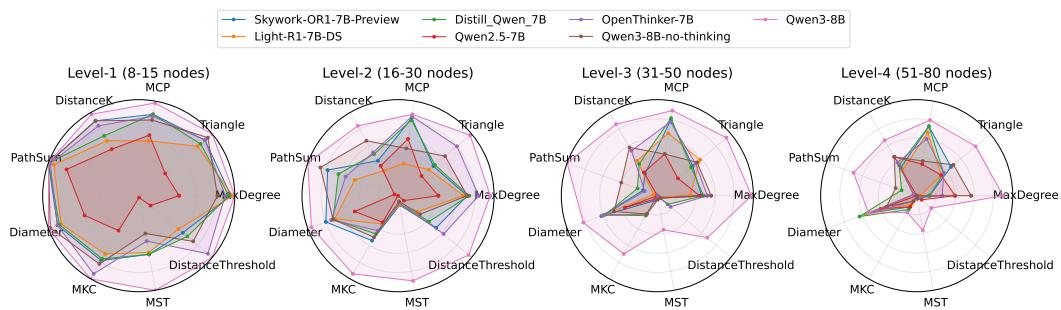
1333

1334

1335

1336

1337



1338

1339

1340

1341

1342

1343

1344

1345

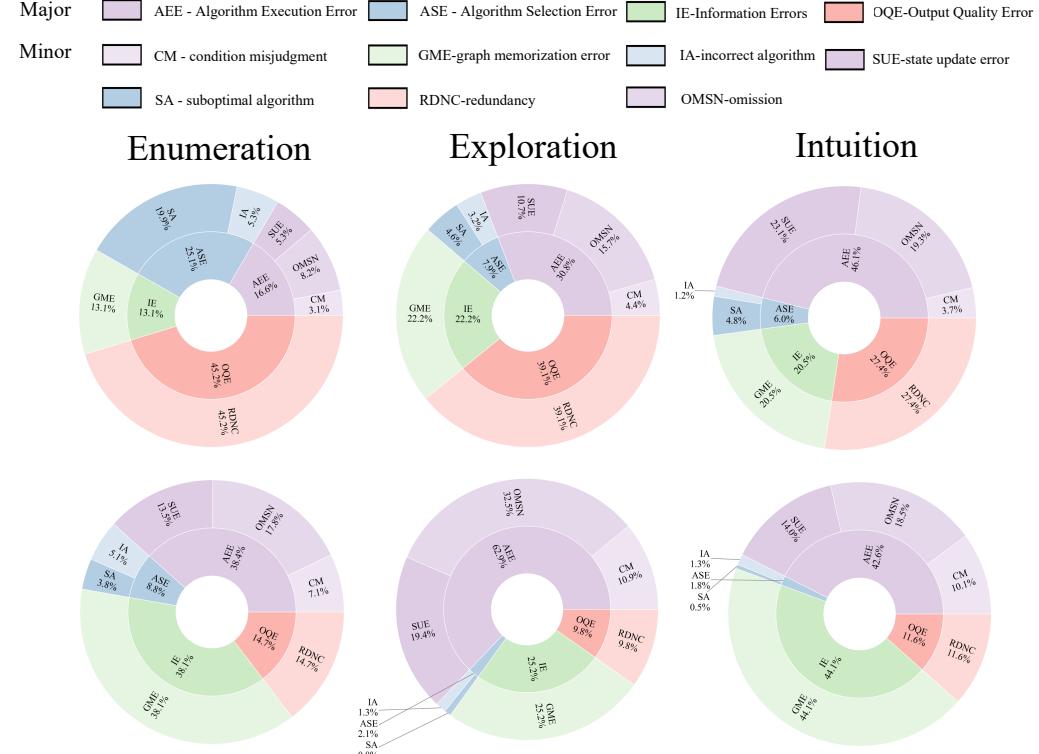
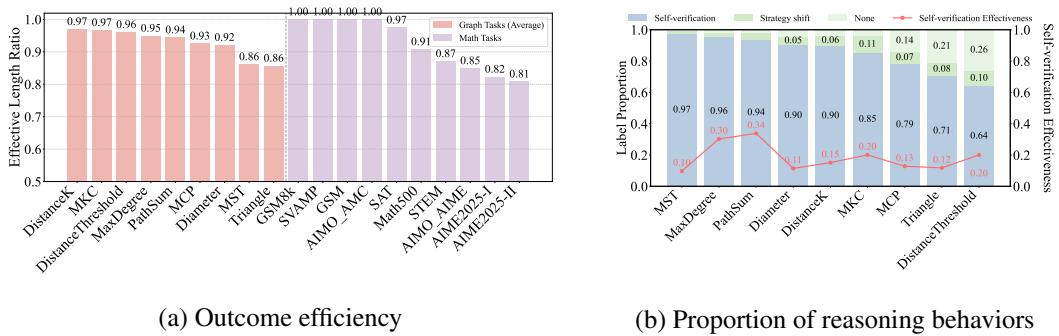
1346

1347

1348

1349

Figure 17: Pass@k accuracy of different reasoning taxonomies (8B models).

1350 H.3 ERROR ANALYSIS (RQ1)
13511378 Figure 18: Error type distributions across reasoning taxonomies for Qwen3-8B (*top*) and its non-
1379 reasoning variant Qwen3-8B-no-thinking (*bottom*).
13801381 H.4 OVERTHINKING ANALYSIS (RQ2)
13821395 Figure 19: Overthinking analysis of Distill-Qwen-32B.
1396

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

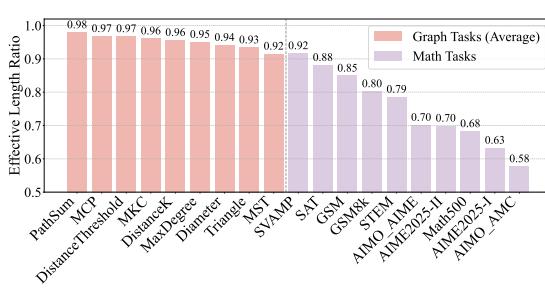
1421

1422

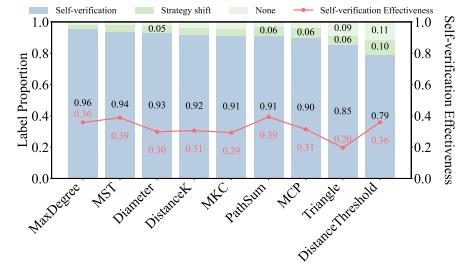
1423

1424

1425



1435 (a) Outcome efficiency



1436 (b) Proportion of reasoning behaviors

1437 Figure 20: Overthinking analysis of Qwen3-32B.

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458 **I DETAILS DEMONSTRATION**1459 **I.1 PROMPTS**1460 **Prompts I.1: LLM Prompts For Categorizing Enumeration Algorithm**1461 **SYSTEM PROMPT**

1462 You are a graph theory expert. Given a graph problem and an answer to that problem, please
 1463 determine which of the following approaches is used in the answer:

- 1464 a). Enumeration (such as brute-force methods)
- 1465 b). Search (such as BFS, DFS)
- 1466 c). Greedy
- 1467 d). Not mentioned (other algorithmic approaches)

1468 Directly output your choice (a, b, c, or d) with no explanation or additional text.

1469 **USER PROMPT**

1470 Given the problem and its answer below, identify which of the following approaches was used to
 1471 derive the solution:

1472 Problem: {question}

1473 Answer: {answer}

1474 **Prompts I.2: LLM Prompts For Categorizing Exploration Algorithm**1475 **SYSTEM PROMPT**

1476 You are a graph theory expert. Given a problem related to finding the shortest path and its
 1477 corresponding answer, please determine which of the following approaches is used in the answer:

- 1478 a). Enumeration (such as brute-force methods)
- 1479 b). Search (such as BFS, DFS)
- 1480 c). Greedy (such as Dijkstra's algorithm)
- 1481 d). Not mentioned (other algorithmic approaches)

1482 Directly output your choice (a, b, c or d) with no explanation or additional text.

1483 **USER PROMPT**

1484 Given the problem and its answer below, identify which of the following approaches was used to
 1485 derive the solution:

1486 Problem: {question}

1487 Answer: {answer}

1488 **Prompts I.3: LLM Prompts For Categorizing Intuition Algorithm**1489 **SYSTEM PROMPT**

1490 You are a graph theory expert. Given a Maximum K-core (MKC) problem and an answer to that
 1491 problem, please determine which of the following approaches is used in the answer:

- 1492 a). Enumeration (such as brute-force methods)
- 1493 b). Search (such as BFS, DFS)
- 1494 c). Greedy (such as Peeling algorithm)
- 1495 d). Not mentioned (other algorithmic approaches)

1496 Directly output your choice (a, b, c or d) with no explanation or additional text.

1497 **USER PROMPT**

1498 Given the problem and its answer below, identify which of the following approaches was used to
 1499 derive the solution:

1500 Problem: {question}

1501 Answer: {answer}

1512

Prompts I.4: LLM Prompts for Categorizing Errors In AI-Generated Solutions

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

OUTPUT QUALITY

- **redundancy:** Unnecessary repetition or superfluous information in the solution.

ALGORITHM SELECTION

- **incorrect algorithm:** The chosen algorithm cannot produce the correct solution for the problem. In this task, the correct algorithms are: `{correct_algorithm_dict[args.task]}`.

- **suboptimal algorithm:** The algorithm used is inefficient or is implemented in a less efficient way. In this task, the efficient algorithms are: `{efficient_algorithm_dict[args.task]}`.

INFORMATION ERRORS

- **graph memorization error:** Misunderstanding or incorrect memory of the graph structure, such as extra or missing nodes/edges.

ALGORITHM EXECUTION

- **state update error:** During algorithm execution, state variables or data structures are updated incorrectly, causing subsequent steps to operate on erroneous states and compromising overall correctness.

- **omission:** Missing important elements during execution, e.g., failure to traverse all nodes or edges.

- **condition misjudgment:** Mistakes in condition checks, such as incorrect if-statement or loop-condition evaluations.

Instructions: The LLM’s response will be segmented into sections labeled as ”[Section 1], content...”, ”[Section 2], content...”, etc.

Your response format should be a list of error annotations as:

”[section index, error type, detailed error analysis]”

If multiple errors exist in one section, list them separately.

Do not output anything other than these error annotations.

Prompts I.5: LLM Prompts For Reformatting The Output

Here is the problem and the response:

You are an intelligent assistant. Given a graph problem and its response, your task is to review the response, which is divided into multiple parts with each step labeled using tags. After reading through the steps, you should group them into distinct sections, where each section represents a complete and logical problem-solving attempt or process.

Specific instructions:

1. Each section should be a standalone and complete problem-solving approach or effort.
2. For each section, include both the starting and ending tags (the ending tag should not be earlier than the starting tag). Additionally, provide a brief summary or title of the section.
3. Present your output in this format: `<<start tag>> - <<end tag>> [Brief description]`. The end tag should be the same as or later than the start tag of the section, and the start tag of the next section should follow directly after the end tag of the previous section.

`\n\n` Do not output any other text or explanation.

Problem: {question}

Response: {answer}

Present your output in this format: `<<start tag>> - <<end tag>> [Brief description]`. The end tag should be the same as or later than the start tag of the sec-

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2

1620 I.2 RESPONSE REFORMATION
1621

1622	Original Response	Reformatted Response
1623		
1624	To determine the street with the **maximum number of connections**, we need to count how many **intersections** each street is involved in.	[Section 1]: Introduction and Problem Setup To determine the street with the **maximum number of connections**, we need to count how many **intersections** each street is involved in.
1625	### Step-by-step: We are given a list of streets and a list of intersections (which represent connections between streets).	### Step-by-step: We are given a list of streets and a list of intersections (which represent connections between streets).
1626	#### Streets: 1. Via Antonio Garbasso 2. Via Giovanni Aldini 3. Via Giuseppe Bagnera ... (Omitted)	#### Streets: 1. Via Antonio Garbasso 2. Via Giovanni Aldini 3. Via Giuseppe Bagnera ... (Omitted)
1627	#### Intersections (connections between streets): - Via Antonio Garbasso and Via Giovanni Aldini - Via Antonio Garbasso and Via Giuseppe Bagnera - Via Antonio Garbasso and Via Orso Mario Corbino ... (Omitted)	#### Intersections (connections between streets): - Via Antonio Garbasso and Via Giovanni Aldini - Via Antonio Garbasso and Via Giuseppe Bagnera - Via Antonio Garbasso and Via Orso Mario Corbino ... (Omitted)
1628	#### Count connections per street: 1. **Via Antonio Garbasso** - Intersects with: Via Giovanni Aldini, Via Giuseppe Bagnera, Via Orso Mario Corbino → **3 connections**	[Section 2]: Counting Connections for Each Street #### Count connections per street: 1. **Via Antonio Garbasso** - Intersects with: Via Giovanni Aldini, Via Giuseppe Bagnera, Via Orso Mario Corbino → **3 connections**
1629	2. **Via Giovanni Aldini** - Intersects with: Via Antonio Garbasso, Via Damiano Macaluso, Via Francesco Grimaldi, Via Gerolamo Cardano → **4 connections**	2. **Via Giovanni Aldini** - Intersects with: Via Antonio Garbasso, Via Damiano Macaluso, Via Francesco Grimaldi, Via Gerolamo Cardano → **4 connections** ... (Omitted)
1630	3. **Via Giuseppe Bagnera** - Intersects with: Via Antonio Garbasso, Via Francesco Grimaldi, Via Gerolamo Cardano → **3 connections** ... (Omitted)	[Section 3]: Conclusion and Final Answer #### Conclusion: The streets with the **maximum number of connections** are **Via Francesco Grimaldi** and **Via Gerolamo Cardano**, each with **6 connections**. #### Final Answer: \boxed{6}
1631	The streets with the **maximum number of connections** are **Via Francesco Grimaldi** and **Via Gerolamo Cardano**, each with **6 connections**.	
1632	### Final Answer: \boxed{6}	
1633		
1634		
1635		
1636		
1637		
1638		
1639		
1640		
1641		
1642		
1643		
1644		
1645		
1646		
1647		
1648		
1649		
1650		
1651		
1652		
1653		
1654		
1655		
1656		
1657		
1658		
1659		
1660		
1661		
1662		
1663		
1664		
1665		
1666		
1667		
1668		
1669		
1670		
1671		
1672		
1673		

Figure 21: Example of Response Reformation.

1674
1675
1676

I.3 CASE STUDIES

1677

Case Study I.1: Response of Qwen3-32B on a DistanceK Task

1678

Problem:

1679

You are given an undirected graph representing the London street network, where nodes represent streets and edges represent intersections. The distance between two directly connected nodes is 1. Given a street Westwell Road Approach, find all streets that are exactly distance 4 away from the street.

1683

Streets in the network: Cleveland Road, Colmer Road, Danbrook Road, Streatham High Road, Penistone Road, Arragon Gardens, Ellison Road, Tankerville Road, Westwell Road, Westwell Road Approach, Buckleigh Road, Greyhound Lane, Gildersfield Road, Kempshott Road, Northanger Road Intersections in the network: Cleveland Road and Ellison Road, Colmer Road and Danbrook Road, Colmer Road and Ellison Road, Colmer Road and Streatham High Road, Danbrook Road and Ellison Road, Streatham High Road and Arragon Gardens, Streatham High Road and Greyhound Lane, Streatham High Road and Gildersfield Road, Streatham High Road and Kempshott Road, Streatham High Road and Penistone Road, Streatham High Road and Westwell Road Approach, Penistone Road and Gildersfield Road, Arragon Gardens and Ellison Road, Ellison Road and Greyhound Lane, Ellison Road and Gildersfield Road, Ellison Road and Kempshott Road, Tankerville Road and Greyhound Lane, Tankerville Road and Gildersfield Road, Tankerville Road and Kempshott Road, Westwell Road and Greyhound Lane, Westwell Road and Northanger Road, Westwell Road and Westwell Road Approach, Buckleigh Road and Greyhound Lane, Buckleigh Road and Gildersfield Road, Buckleigh Road and Kempshott Road, Buckleigh Road and Northanger Road, Greyhound Lane and Northanger Road Please find the streets in distance 4 from the street Westwell Road Approach and output the number of these streets. Present your answer in the following format: \boxed{n}. n is the number of these streets

1699

Response:

1700

[Section 1]: Initial Understanding and Setup

1701

The task is to find all streets exactly 4 units of distance from Westwell Road Approach in the given undirected graph, where each intersection represents an edge of distance 1. An adjacency list is a helpful way to represent the graph structure. Westwell Road Approach is the starting point (level 0). Based on the intersection list, Westwell Road Approach is directly connected to Streatham High Road and Westwell Road, making them the streets at distance 1 (level 1).

1706

[Section 2]: BFS Traversal to Identify Level 3 Nodes

1707

To find the nodes at distance 2, we find the neighbors of the level 1 nodes. The neighbors of Streatham High Road are Colmer Road, Penistone Road, Gildersfield Road, Greyhound Lane, Kempshott Road, and Arragon Gardens. The neighbors of Westwell Road are Greyhound Lane and Northanger Road. The unique set of these neighbors forms level 2: Colmer Road, Penistone Road, Gildersfield Road, Greyhound Lane, Kempshott Road, Arragon Gardens, and Northanger Road. To find level 3, we find the neighbors of all level 2 nodes that have not been visited. This process yields a unique set of new nodes for level 3: Danbrook Road, Ellison Road, Tankerville Road, and Buckleigh Road.

1714

[Section 3]: Re-examination of Level 3 and 4 Nodes

1715

Now, to find level 4, we must find the neighbors of the level 3 nodes (Danbrook Road, Ellison Road, Tankerville Road, Buckleigh Road) that have not already been assigned a level. The neighbors of Danbrook Road are Colmer Road (level 2) and Ellison Road (level 3), so no new nodes are found. The neighbors of Tankerville Road are Greyhound Lane, Gildersfield Road, and Kempshott Road, all of which are in level 2. The neighbors of Buckleigh Road are Greyhound Lane, Gildersfield Road, Kempshott Road, and Northanger Road, all of which are in level 2. For Ellison Road, we must check its intersections. **Ellison Road is connected to: Colmer Road and Ellison Road, Danbrook Road and Ellison Road, Arragon Gardens and Ellison Road, Ellison Road and Greyhound Lane, Ellison Road and Gildersfield Road, Ellison Road and Kempshott Road.** (This list of Ellison Road's neighbors is incomplete; it omits the intersection with Cleveland Road, which is explicitly provided in the problem description. – graph memorization error)

1724

All of the listed neighbors for Ellison Road are in either level 2 or level 3. So no new nodes here.

1725

So indeed, no new nodes. That would mean that level 4 is empty.

1726

(This conclusion is incorrect because the algorithm failed to process the edge between Ellison

1727

1728 Road (level 3) and Cleveland Road. This failure to traverse a valid edge results in Cleveland Road
 1729 being missed. – omission) [Section 4]: Final Verification and Conclusion
 1730 The analysis incorrectly concludes that since all neighbors of level 3 nodes are already in levels 2
 1731 or 3, there are no nodes at distance 4. The response attempts to manually trace paths but fails to
 1732 find a path of length 4 due to the previously forgotten graph connection. **Therefore, there are no**
 1733 **nodes at distance 4. So the answer is 0.**
 1734 **(This final judgment is incorrect. The BFS algorithm was executed on an incomplete graph, leading**
 1735 **to the false conclusion that level 4 is empty when it actually contains one node, Cleveland Road. –**
 1736 **condition misjudgment)**

Case Study I.2: Response of Qwen3-32B on a Minimum Spanning Tree Task

Problem:

You are required to solve the Minimum Spanning Tree Problem for an undirected street network. In this network, nodes represent streets (e.g., street IDs) and edges represent intersections between streets. The weight of each edge is the distance between two streets.

Streets in the network: Carbeen Road, Eucalyptus Drive, Erawar Close, Nicholson Avenue, Howes Close, Fairy Dell Close, Elouera Road, Booleroo Place, Higgins Place, Keys Close, Russell Crescent, Coppersleigh Close, Gundy Place, Boree Place, Brigalow Place, Baroona Road, Eastview Road, Mason Lane, Phillips Lane, Ulric Lane, Coral Heath Avenue, Brushtail Court, Hibbertia Place, Corang Road, Honeycup Close, Rocklily Avenue, Billarga Road, Pittwater Road, Apanie Place, Duneba Drive, Silver Crescent, Colin Place, Kimba Close, Western Crescent, Old Glenfield Road, Warrigal Drive, Coora Road, Namoi Road, Nulgarrar Street, Strathallen Avenue, Settlers Way, Euroka Road, Bottle Brush Road, Gum Blossom Drive, Barkala Place, Quarter Sessions Road, Dryden Avenue, De Saxe Close, Lynrob Place, Timbarra Road Intersections between these streets: Carbeen Road and Duneba Drive (weight: 3), Carbeen Road and Elouera Road (weight: 3), Eucalyptus Drive and Billarga Road (weight: 3), Eucalyptus Drive and Boree Place (weight: 9), Eucalyptus Drive and Corang Road (weight: 3), Eucalyptus Drive and Elouera Road (weight: 9), Erawar Close and Quarter Sessions Road (weight: 4), Nicholson Avenue and Quarter Sessions Road (weight: 6), Howes Close and Quarter Sessions Road (weight: 1), Fairy Dell Close and Quarter Sessions Road (weight: 5), Elouera Road and Duneba Drive (weight: 5), Booleroo Place and Corang Road (weight: 6), Higgins Place and Keys Close (weight: 3), Higgins Place and Quarter Sessions Road (weight: 4), Higgins Place and Russell Crescent (weight: 9), Russell Crescent and Quarter Sessions Road (weight: 6), Coppersleigh Close and Corang Road (weight: 2), Gundy Place and Duneba Drive (weight: 10), Boree Place and Duneba Drive (weight: 1), Brigalow Place and Duneba Drive (weight: 1), Baroona Road and Eastview Road (weight: 2), Baroona Road and Mason Lane (weight: 2), Baroona Road and Namoi Road (weight: 8), Baroona Road and Nulgarrar Street (weight: 4), Baroona Road and Phillips Lane (weight: 7), Baroona Road and Pittwater Road (weight: 9), Baroona Road and Quarter Sessions Road (weight: 9), Baroona Road and Strathallen Avenue (weight: 5), Baroona Road and Ulric Lane (weight: 1), Eastview Road and Pittwater Road (weight: 3), Eastview Road and Quarter Sessions Road (weight: 2), Mason Lane and Namoi Road (weight: 2), Coral Heath Avenue and Hibbertia Place (weight: 6), Coral Heath Avenue and Honeycup Close (weight: 7), Coral Heath Avenue and Quarter Sessions Road (weight: 1), Coral Heath Avenue and Rocklily Avenue (weight: 1), Brushtail Court and Old Glenfield Road (weight: 5), Brushtail Court and Quarter Sessions Road (weight: 3), Corang Road and Billarga Road (weight: 6), Corang Road and Kimba Close (weight: 5), Corang Road and Quarter Sessions Road (weight: 4), Pittwater Road and Quarter Sessions Road (weight: 6), Apanie Place and Duneba Drive (weight: 10), Duneba Drive and Euroka Road (weight: 6), Duneba Drive and Quarter Sessions Road (weight: 7), Silver Crescent and Coora Road (weight: 6), Silver Crescent and Quarter Sessions Road (weight: 1), Colin Place and Dryden Avenue (weight: 9), Colin Place and Quarter Sessions Road (weight: 10), Western Crescent and Quarter Sessions Road (weight: 5), Old Glenfield Road and Quarter Sessions Road (weight: 6), Warrigal Drive and Quarter Sessions Road (weight: 7), Coora Road and Barkala Place (weight: 9), Settlers Way and Quarter Sessions Road (weight: 10), Bottle Brush Road and Gum Blossom Drive (weight: 7), Bottle Brush Road and Quarter Sessions Road (weight: 4), Gum Blossom Drive and Quarter Sessions Road (weight: 10), Barkala Place and Quarter Sessions Road (weight: 7), Quarter Sessions Road and De Saxe Close (weight: 5), Quarter Sessions Road and Lynrob Place (weight: 5), Quarter Sessions Road and Timbarra Road

1782 (weight: 6), De Saxe Close and Lynrob Place (weight: 1), De Saxe Close and Timbarra Road
 1783 (weight: 4). Identify the minimum spanning tree of this network. The minimum spanning tree is a
 1784 subset of edges in a connected, weighted graph that connects all the vertices together with the
 1785 smallest possible total edge weight and without any cycles. Present your answer in the following
 1786 format: \boxed{n} , where n is the sum of the weights of the edges in the minimum spanning tree.
 1787

1788 **Response:**

1789 [Section 1]: Initial Thoughts and Edge Listing

1790 To solve this Minimum Spanning Tree (MST) problem, I will use Kruskal's algorithm, which
 1791 involves sorting all edges by weight and adding them to the tree if they do not form a cycle. I will
 1792 begin by listing and sorting the edges based on their weights. The edges with a weight of 1 are:
 1793 Boree Place - Duneba Drive, Brigalow Place - Duneba Drive, Howes Close - Quarter Sessions
 1794 Road, Baroona Road - Ulric Lane, Coral Heath Avenue - Rocklily Avenue, Coral Heath Avenue
 1795 - Quarter Sessions Road, Silver Crescent - Quarter Sessions Road, and De Saxe Close - Lynrob
 1796 Place. The edges with a weight of 2 are: Coppersleigh Close - Corang Road, Baroona Road -
 1797 Eastview Road, Baroona Road - Mason Lane, Eastview Road - Quarter Sessions Road, and Mason
 1798 Lane - Namoi Road.

1799 [Section 2]: First Attempt at MST Calculation

1800 I will now apply Kruskal's algorithm. First, I select all edges with weight 1, which can all be added
 1801 without creating cycles. Next, I process the five edges with weight 2, all of which are safe to add.
 1802 The total weight so far is 16. I then add all six edges with weight 3, bringing the total weight to 34.
 1803 Next, I process edges with weight 4. **So total weight 4 edges: 4 edges? (This count is incorrect.**
 1804 **The algorithm fails to include all edges of weight 4 from the problem description, specifically**
 1805 **missing Higgins Place - QSR and De Saxe Close - Timbarra Road. – graph memorization error** I
 1806 add the four identified edges, bringing the total weight to 50. I then process the edges with weight
 1807 5. **So all six weight 5 edges can be added. (This count is also incorrect. The algorithm misses the**
 1808 **edge Fairy Dell Close - QSR (weight 5). – omission)** This brings the total weight to 80.

1809 Next, I process the edges with weight 6. **So seven edges with weight 6. (This count is incorrect.**
 1810 **The algorithm fails to identify all edges with a weight of 6, missing several connections to Quarter**
 1811 **Sessions Road and others. – graph memorization error)** I correctly determine that the edge Corang
 1812 Road - Billarga Road should be skipped as it forms a cycle. However, I incorrectly determine
 1813 that the edge Old Glenfield Road - QSR also creates a cycle based on a faulty state. **So from the**
 1814 **seven weight 6 edges, we can add Russell Crescent - QSR, Pittwater Road - QSR, Duneba Drive -**
 1815 **Euroka Road, Silver Crescent - Coora Road, Warrigal Drive - QSR. (This step contains multiple**
 1816 **errors. The list of weight 6 edges is incomplete, and the cycle detection for Old Glenfield Road -**
 1817 **QSR is based on a flawed understanding of the current graph state. – state update error)** This adds
 1818 30 to the total, making it 110. The process continues in this manner, with accumulating errors.

1819 [Section 3]: Identifying and Correcting Mistakes in Weight 6 Edges

1820 I now recognize that my previous analysis was flawed. I missed the edge Fairy Dell Close - QSR
 1821 (weight 5). **So during the weight 5 step, I should have added seven edges instead of six. (This**
 1822 **section demonstrates the algorithm's confusion and repeated errors. While it correctly identifies**
 1823 **one missed edge, its subsequent recalculations remain flawed, leading to more incorrect states.**
 1824 **This repetitive and confusing correction process is a form of redundancy. – redundancy)** I then
 1825 re-evaluate the weight 6 edges and realize I also missed Booleroo Place - Corang Road, Quarter
 1826 Sessions Road - Timbarra Road, and Coral Heath Avenue - Hibbertia Place. **Ah, here's another**
 1827 **mistake! (The repeated self-correction and recalculation indicate a persistent failure to maintain a**
 1828 **correct state of the graph's connected components. – state update error)** After several rounds of
 1829 corrections, I still have an incomplete and inaccurate picture of the graph.

1830 [Section 4]: Final MST Calculation and Verification

1831 After realizing multiple oversights, I will restart the calculation. Weight 1 (8 edges) + Weight
 1832 2 (5 edges) + Weight 3 (6 edges) = 34. Next are the weight 4 edges. **Weight 4 edges: $5*4=20$ – total 54. (This is incorrect. There are six edges with weight 4 in the graph. The algorithm**
 1833 **omits the edge De Saxe Close - Timbarra Road (weight 4). – graph memorization error)** Next
 1834 are the weight 5 edges. There are seven, which are all added, for a total of 35, bringing the sum
 1835 to 89. Next are the weight 6 edges. **Weight 6 edges: $9*6=54$ – total 143. (This step contains**
 1836 **two errors. First, the algorithm incorrectly includes the edge Warrigal Drive - QSR, which has a**
 1837 **weight of 7, not 6. – graph memorization error) (Second, this incorrect inclusion leads to a faulty**
 1838 **sum for this step and an incorrect running total. – state update error)** Next are the weight 7 edges.

1836
1837
1838

Finally, to connect the remaining components, I add edges with weights 9 and 10. Total sum: $6+10+18+20+35+54+35+9+30 = 217$.

1839

Case Study I.3: Response of Qwen3-32B on Maximum Triangle Sum Task

Problem:

You are required to solve the Maximum Triangle Sum Problem for an undirected wikipedia network. In this network, nodes represent wikipedia articles and edges represent hyperlinks between articles. Each node is assigned a weight. Your objective is to find the triangle with the maximum sum of weights of its three nodes.

Articles in the network: Montebelluna (weight: 1), Massimo Mascioletti (weight: 8), Gianluca Faliva (weight: 4), Eppelheim (weight: 7), United States (weight: 6), Alberto Rebecca (weight: 10), October 15 (weight: 6), Rugby union (weight: 1), Italy (weight: 9), List of football clubs in Italy (weight: 9), Manuel Dallan (weight: 8), Brad Johnstone (weight: 1) Hyperlinks between these articles: Montebelluna and List of football clubs in Italy, Montebelluna and Eppelheim, Montebelluna and Alberto Rebecca, Montebelluna and Italy, Montebelluna and Manuel Dallan, Massimo Mascioletti and Brad Johnstone, Massimo Mascioletti and Gianluca Faliva, Gianluca Faliva and Italy, Gianluca Faliva and Brad Johnstone, Gianluca Faliva and Manuel Dallan, Gianluca Faliva and Rugby union, Eppelheim and Italy, United States and Italy, United States and October 15, Alberto Rebecca and Italy, October 15 and Italy, October 15 and Manuel Dallan, Rugby union and Manuel Dallan, Italy and Manuel Dallan. Identify the triangle with the maximum sum of weights of its three nodes in this network. Present your answer in the following format: \boxed{n}. n is the maximum sum of weights of the triangle.

Response:

[Section 1]: Initial Setup and Problem Understanding

Okay, let's try to solve this problem. The task is to find the triangle (a set of three nodes all connected to each other) in the given undirected graph that has the maximum sum of their node weights. The nodes are Wikipedia articles with specific weights, and the edges are hyperlinks between them. First, I need to list out all the nodes and their weights to have a clear view. Let me jot them down: Montebelluna: 1, Massimo Mascioletti: 8, Gianluca Faliva: 4, Eppelheim: 7, United States: 6, Alberto Rebecca: 10, October 15: 6, Rugby union: 1, Italy: 9, List of football clubs in Italy: 9, Manuel Dallan: 8, Brad Johnstone: 1. Now, the edges (hyperlinks) are given. Let me list them out to see which nodes are connected. Each edge connects two nodes, and for a triangle, each pair in the three-node set must be connected. The edges provided are: Montebelluna - List of football clubs in Italy, Montebelluna - Eppelheim, Montebelluna - Alberto Rebecca, Montebelluna - Italy, Montebelluna - Manuel Dallan, Massimo Mascioletti - Brad Johnstone, Massimo Mascioletti - Gianluca Faliva, Gianluca Faliva - Italy, Gianluca Faliva - Brad Johnstone, Gianluca Faliva - Manuel Dallan, Gianluca Faliva - Rugby union, Eppelheim - Italy, United States - Italy, United States - October 15, Alberto Rebecca - Italy, October 15 - Italy, October 15 - Manuel Dallan, Rugby union - Manuel Dallan, Italy - Manuel Dallan.

[Section 2]: Identifying High-Weight Nodes and Initial Triangle Candidates

Now, I need to find all possible triangles. A triangle is three nodes where each pair is connected by an edge. So, for each set of three nodes, check if all three possible edges exist between them. But since there are 12 nodes, checking all combinations might be tedious, but maybe we can focus on nodes with higher weights because we want the maximum sum. High-weight nodes are more likely to be part of the maximum triangle. Looking at the weights, the highest are: Alberto Rebecca: 10, Italy: 9, List of football clubs in Italy: 9, Manuel Dallan: 8, Massimo Mascioletti: 8, United States: 6 (but lower than others), Others are 6, 4, 1, etc. So let's look for triangles involving Alberto Rebecca (10) and Italy (9) since those are high. Looking at the edges connected to Alberto Rebecca. From the edges, there's an edge between Montebelluna and Alberto Rebecca (edge 3), and edge 15: Alberto Rebecca - Italy. So if there's an edge between Montebelluna and Italy, then Montebelluna, Alberto Rebecca, Italy would form a triangle. Looking at edge 4: Montebelluna - Italy. Yes! So Montebelluna, Alberto Rebecca, Italy form a triangle. Their weights are $1 + 10 + 9 = 20$. Is there a better one? Another high-weight node is Italy (9). Let's check other nodes connected to Italy. Italy is connected to: Montebelluna (edge 4), Gianluca Faliva (edge 8), Eppelheim (edge 12), Alberto Rebecca (edge 15), United States (edge 13), Manuel Dallan (edge 19). So any triangle involving Italy and two other nodes connected to Italy. Let's see. For example, if there's a node

1890

connected to both Italy and another node connected to Italy. Let's check combinations. Take Gianluca Faliva (4) connected to Italy (edge 8). What other nodes connected to Italy are connected to Gianluca Faliva? Looking at Gianluca Faliva's edges: Edges connected to Gianluca Faliva: 7 (Massimo Mascioletti), 8 (Italy), 9 (Brad Johnstone), 10 (Manuel Dallan), 11 (Rugby union). So connected to Italy and Manuel Dallan, Brad Johnstone, etc. Now, is there a connection between Italy and Manuel Dallan? Yes, edge 19. Also, is there a connection between Gianluca Faliva and Italy (edge 8) and between Gianluca Faliva and Manuel Dallan (edge 10), and between Italy and Manuel Dallan (edge 19). So the triangle Gianluca Faliva, Italy, Manuel Dallan. Their weights: $4 + 9 + 8 = 21$. That's higher than 20.

1899

[Section 3]: Checking Other High-Weight Node Combinations for Better Triangles

1900

Another candidate: Italy, United States, and October 15. The edges are United States - Italy (edge 13), United States - October 15 (edge 14), and Italy - October 15 (edge 16). So that's a triangle. Their weights: 6 (US) + 9 (Italy) + 6 (October 15) = 21. Same as the previous 21. So same sum. Now, what about the triangle Gianluca Faliva, Italy, Manuel Dallan (sum 21) and the triangle United States, Italy, October 15 (sum 21). Are there any triangles with higher sums? Let's check other high-weight nodes. For example, Manuel Dallan (8) and Massimo Mascioletti (8). Are they connected? Let me check. Massimo Mascioletti is connected to Brad Johnstone (edge 6) and Gianluca Faliva (edge 7). Gianluca Faliva is connected to Manuel Dallan (edge 10). But is there a direct connection between Massimo Mascioletti and Manuel Dallan? Not that I can see. So no triangle there. What about Massimo Mascioletti (8), Gianluca Faliva (4), Brad Johnstone (1). They form a triangle? Let's check edges: Massimo Mascioletti is connected to Gianluca Faliva (edge 7) and Brad Johnstone (edge 6). Gianluca Faliva is connected to Brad Johnstone (edge 9). So yes, triangle Massimo Mascioletti, Gianluca Faliva, Brad Johnstone. Sum is $8 + 4 + 1 = 13$. Not better. Another high-weight node is List of football clubs in Italy (9). Let's check if it's part of a triangle. The only edge connected to it is Montebelluna (edge 1). Are there other edges? Let me check. The given edges don't show any other connections for List of football clubs in Italy. So unless Montebelluna is connected to another node that's connected to List of football clubs in Italy, but since Montebelluna is connected to List of football clubs in Italy and to Italy, but Italy isn't connected to List of football clubs in Italy? Let me check. The edges don't mention an edge between Italy and List of football clubs in Italy. So the triangle would need Montebelluna, List of football clubs in Italy, and another node connected to both. But since List of football clubs in Italy is only connected to Montebelluna, no triangle possible here. What about the triangle involving Alberto Rebecca (10), Italy (9), and someone else. For example, Alberto Rebecca is connected to Montebelluna (edge 3) and Italy (edge 15). If Montebelluna is connected to Italy (edge 4), which it is. So that triangle is already considered (sum 20). Are there others? For example, Alberto Rebecca connected to someone else who's connected to Italy. Let's see. Suppose Alberto Rebecca is connected to another node connected to Italy. But in the edges given, Alberto Rebecca is only connected to Montebelluna and Italy. So no other connections. So no other triangles involving Alberto Rebecca except with Montebelluna and Italy. Another candidate: Manuel Dallan (8), Italy (9), and someone else. Let's see. For example, if there's a node connected to both Manuel Dallan and Italy. Let's check. October 15 is connected to Italy (edge 16) and to Manuel Dallan (edge 17). So the triangle Italy, Manuel Dallan, October 15. Which we already considered (sum 21). Also, Rugby union is connected to Manuel Dallan (edge 18), but is Rugby union connected to Italy? No. So no triangle there. What about other combinations? Let's check if there's a triangle with higher than 21. Let's think about nodes with high weights. The highest weights are 10, 9, 9, 8, 8. Let's see if there's a triangle with two 9s and an 8. For example, Italy (9), List of football clubs in Italy (9), and someone connected to both. Are they connected? The edges don't mention a direct link between Italy and List of football clubs in Italy. So unless there's another node connected to both. Let's see. Montebelluna is connected to both List of football clubs in Italy (edge 1) and to Italy (edge 4). **So the triangle would be Montebelluna (1), Italy (9), List of football clubs in Italy (9).** (This is incorrect. The response correctly identifies that Montebelluna is connected to both Italy and List of football clubs in Italy, but it fails to verify the third required edge between Italy and List of football clubs in Italy before declaring it a triangle. This is a graph memorization error).

1939

Sum is $1 + 9 + 9 = 19$, which is less than 21.

1940

[Section 4]: Exhaustive Search for All Possible Triangles and Verification of Maximum Sum

1941

What about the triangle between Italy (9), Eppelheim (7), and someone else? For example, Eppelheim is connected to Italy (edge 12) and to Montebelluna (edge 2). But Montebelluna isn't connected to Italy except through edge 4. Wait, Montebelluna is connected to Italy (edge 4), so

1942

1943

1944 the triangle would be Montebelluna (1), Eppelheim (7), Italy (9). Sum is $1+7+9=17$. Not better.
 1945 Another candidate: United States (6), Italy (9), and someone else. The only other connection
 1946 is October 15 (edge14 and 16). So the triangle is already considered. Is there a triangle with
 1947 three high-weight nodes? For example, Italy (9), List of football clubs in Italy (9), and someone
 1948 else. But they aren't connected. So no. **What about Manuel Dallan (8), List of football clubs**
 1949 **in Italy (9), and someone connected to both?** List of football clubs in Italy is only connected to
 1950 Montebelluna (1), and Manuel Dallan is connected to Montebelluna (edge5). So the triangle would
 1951 be Montebelluna (1), List of football clubs in Italy (9), Manuel Dallan (8). (This is incorrect. The
 1952 response finds that Montebelluna is a common neighbor to both 'List of football clubs in Italy'
 1953 and 'Manuel Dallan' but incorrectly assumes this forms a triangle without verifying the missing
 1954 third edge between 'List of football clubs in Italy' and 'Manuel Dallan' – graph memorization
 1955 error). Sum is $1+9+8=18$. Not better. Another possibility: Is there a triangle involving Alberto
 1956 Rebecca (10), Manuel Dallan (8), and someone else? Let's see. Alberto Rebecca is connected
 1957 to Montebelluna (1) and Italy (9). Manuel Dallan is connected to Italy. But there's no direct
 1958 edge between Alberto Rebecca and Manuel Dallan. So no triangle there. What about the triangle
 1959 between Gianluca Faliva (4), Manuel Dallan (8), and Rugby union (1)? They are connected via
 1960 edges 10 and 18. But is there an edge between Gianluca Faliva and Rugby union? Yes (edge11).
 1961 And between Rugby union and Manuel Dallan? Yes (edge18). And between Gianluca Faliva
 1962 and Manuel Dallan (edge10). So the triangle is Gianluca Faliva (4), Manuel Dallan (8), Rugby
 1963 union (1). Sum is $4+8+1=13$. Not better. Another check: Are there any other triangles with
 1964 high sums? Let's think. For example, United States (6), Italy (9), and someone else. The only
 1965 other connection is October 15 (6). So that's the triangle we already have. Sum 21. Is there a
 1966 triangle with two 8s? For example, Massimo Mascioletti (8) and Manuel Dallan (8). But they
 1967 aren't connected. What about Manuel Dallan (8) and someone else? Let's see. The only other
 1968 node with 8 is Massimo Mascioletti (8). But no connection. So no triangle with two 8s. What
 1969 about the triangle between Manuel Dallan (8), Italy (9), and another node with 8? For example,
 1970 if there's a node connected to both Manuel Dallan and Italy. But the only such node is Gianluca
 1971 Faliva (4) or October 15 (6). So no. So far, the maximum sum is 21, achieved by two different
 1972 triangles: (Gianluca Faliva, Italy, Manuel Dallan) and (United States, Italy, October 15). Are
 1973 there any other triangles with sum 21 or higher? Let me check another angle. Let's look for all
 1974 triangles and compute their sums. First, list all possible triangles. Since this is time-consuming,
 1975 but maybe I can find all possible triangles by looking at each node's connections. Starting with
 1976 Italy (9), since it's connected to many nodes. Let's check all pairs of nodes connected to Italy
 1977 and see if they are connected to each other. Italy is connected to: Montebelluna (M), Gianluca
 1978 Faliva (G), Eppelheim (E), Alberto Rebecca (A), United States (US), October 15 (O), Manuel
 1979 Dallan (D). So for each pair among these, check if they are connected. Check pairs: M and G:
 1980 Are Montebelluna and Gianluca Faliva connected? No. The edges connected to Montebelluna
 1981 are List of football clubs in Italy, Eppelheim, Alberto Rebecca, Italy, and Manuel Dallan. So no
 1982 direct edge between M and G. M and E: Montebelluna and Eppelheim are connected (edge2). So
 1983 the triangle M, E, Italy. Sum is $1+7+9=17$. M and A: Montebelluna and Alberto Rebecca are
 1984 connected (edge3). So triangle M, A, Italy. Sum $1+10+9=20$. M and US: Are Montebelluna and
 1985 United States connected? No. So no triangle. M and O: No connection between Montebelluna and
 1986 October 15. M and D: Montebelluna and D are connected (edge5). So triangle M, D, Italy. Sum
 1987 $1+8+9=18$. G and E: Are Gianluca Faliva and Eppelheim connected? No. So no triangle. G and A:
 1988 Gianluca Faliva and Alberto Rebecca? No. No edge between them. G and US: Gianluca Faliva and
 1989 United States? No. G and O: Gianluca Faliva and October 15? No. G and D: Gianluca Faliva and
 1990 D are connected (edge10). So triangle G, D, Italy. Sum $4+8+9=21$. This is one of the candidates.
 1991 E and A: Eppelheim and Alberto Rebecca? No. No edge between them. E and US: Eppelheim
 1992 and US? No. E and O: No. E and D: No. A and US: Alberto Rebecca and US? No. A and O: No.
 1993 A and D: No. US and O: Yes, connected via edge14. Also, US and Italy (edge13), O and Italy
 1994 (edge16). So triangle US, O, Italy. Sum $6+6+9=21$. US and D: Are US and D connected? No. So
 1995 no triangle. O and D: Yes, connected via edge17. So triangle O, D, Italy (already considered). So
 1996 from Italy's connections, the triangles with sum 21 are: G (4), D (8), Italy (9): sum 21, US (6),
 1997 O (6), Italy (9): sum 21. Now check other nodes not connected to Italy. For example, check if
 1998 there are triangles among other nodes. For example, check Gianluca Faliva's connections. He is
 1999 connected to Massimo Mascioletti (Masc), Brad Johnstone (B), Manuel Dallan (D), Rugby union
 (R), and Italy (I). Check pairs among these: Masc and B: connected via edge6? Yes. Masc and
 2000 Gianluca (edge7), B and Gianluca (edge9). Also, Masc and B are connected (edge6). So triangle

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Masc, B, Gianluca. Sum $8+1+4=13$. Masc and D: Are they connected? No. Masc is connected to Gianluca and B, but not directly to D. So no. Masc and R: No. B and D: connected via edge9 (B and Gianluca) and edge10 (Gianluca and D). But B and D? No. So no triangle. B and R: No. D and R: connected via edge18 (D and R). But Gianluca and R are connected (edge11). So triangle Gianluca (4), D (8), R (1). Sum $4+8+1=13$. Other combinations? No. Check Manuel Dallan's connections: Italy, October 15, Rugby union, Montebelluna. Check if any of those form triangles not involving Italy. For example, October 15 and Rugby union? No. October 15 and Rugby union are not connected. So no. Check October 15's connections: United States, Italy, Manuel Dallan. The triangle US-Italy-O15 is already considered. Check other nodes. For example, Massimo Mascioletti (8) connected to Brad Johnstone (1) and Gianluca (4). No other connections. No triangles. Alberto Rebecca (10) connected to Montebelluna (1) and Italy (9). No other connections. So no other triangles. List of football clubs in Italy is only connected to Montebelluna. So no triangles. Eppelheim is connected to Montebelluna and Italy. No other connections. So no other triangles. United States is connected to Italy and October 15. No other connections except those. Rugby union is connected to Gianluca and Manuel Dallan. No other connections. So all possible triangles have been checked. The maximum sum is 21.